蓝桥杯算法提高——拿糖果(数学+dp)

问题描述
  妈妈给小B买了N块糖!但是她不允许小B直接吃掉。
  假设当前有M块糖,小B每次可以拿P块糖,其中P是M的一个不大于根号下M的质因数。这时,妈妈就会在小B拿了P块糖以后再从糖堆里拿走P块糖。然后小B就可以接着拿糖。
  现在小B希望知道最多可以拿多少糖。
输入格式
  一个整数N
输出格式
  最多可以拿多少糖
样例输入
15
样例输出
6
数据规模和约定
  N <= 100000

自顶向上分析,当某个数量的糖果的根号下质因数只有一个时,显然只有一种拿法
有多个的时候,就选一个能拿到最多数量的质因数,一直这样下去肯定会找到第一种情况,而这类质因数早就算出来了
转移方程见程序

#include <iostream>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
#include <cstdio>
#include <set>
#include <math.h>
#include <algorithm>
#include <queue>
#include <iomanip>
#define INF 0x3f3f3f3f
#define MAXN 100005
#define Mod 99999999
using namespace std;
bool notprime[MAXN];
int primes[700005]; //素数从i=1开始
void get_prime()
{
    notprime[1]=true;
    for(int i=2;i<MAXN;++i)
    if(!notprime[i])
    {
        primes[++primes[0]]=i;
        for(long long j=(long long)i*i;j<MAXN;j+=i)
        notprime[j]=true;
    }
}
int dp[MAXN];
int main()
{
    get_prime();
    int n;
    cin>>n;
    for(int i=1;i<=n;++i)
    {
        for(int j=1;j<=primes[0];++j)
        {
            if(primes[j]>sqrt(i))
                break;
            if(i%primes[j]==0)
            {
                dp[i]=max(dp[i],dp[i-2*primes[j]]+primes[j]);
            }
        }
    }
    cout<<dp[n];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值