问题描述
妈妈给小B买了N块糖!但是她不允许小B直接吃掉。
假设当前有M块糖,小B每次可以拿P块糖,其中P是M的一个不大于根号下M的质因数。这时,妈妈就会在小B拿了P块糖以后再从糖堆里拿走P块糖。然后小B就可以接着拿糖。
现在小B希望知道最多可以拿多少糖。
输入格式
一个整数N
输出格式
最多可以拿多少糖
样例输入
15
样例输出
6
数据规模和约定
N <= 100000
自顶向上分析,当某个数量的糖果的根号下质因数只有一个时,显然只有一种拿法
有多个的时候,就选一个能拿到最多数量的质因数,一直这样下去肯定会找到第一种情况,而这类质因数早就算出来了
转移方程见程序
#include <iostream>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
#include <cstdio>
#include <set>
#include <math.h>
#include <algorithm>
#include <queue>
#include <iomanip>
#define INF 0x3f3f3f3f
#define MAXN 100005
#define Mod 99999999
using namespace std;
bool notprime[MAXN];
int primes[700005]; //素数从i=1开始
void get_prime()
{
notprime[1]=true;
for(int i=2;i<MAXN;++i)
if(!notprime[i])
{
primes[++primes[0]]=i;
for(long long j=(long long)i*i;j<MAXN;j+=i)
notprime[j]=true;
}
}
int dp[MAXN];
int main()
{
get_prime();
int n;
cin>>n;
for(int i=1;i<=n;++i)
{
for(int j=1;j<=primes[0];++j)
{
if(primes[j]>sqrt(i))
break;
if(i%primes[j]==0)
{
dp[i]=max(dp[i],dp[i-2*primes[j]]+primes[j]);
}
}
}
cout<<dp[n];
return 0;
}