九、量子信道与量子信道容量

九、量子信道与量子信道容量

本文讨论如果在量子信道上传送经典 bit 信息,并假设出错率任意小,此时能够以什么样的方式用 bit 和 qubit 之比来确定信道的传送速率?还有,在这个任意小的出错率的情况下能够达到的传送速率的最大值是多少?


1.经典信道与信道编码定理


  1. 经典无记忆单符号离散信道的数学模型的描述
           对于经典无记忆单符号离散信道 W ,给定输入信道的变量 X 的可能值为有限字母集合 { a 1 , ⋅ ⋅ ⋅ , a r } \{a_1,···,a_r\} {a1,,ar} ,而从信道输出的变量 Y 可能的取值为有限字母集合 { b 1 , ⋅ ⋅ ⋅ , b s } \{b_1,···,b_s\} {b1,,bs} ,我们定义从 X 到 Y 的概率迁移(传递概率)为下式:
    P ( y ∣ x ) = P ( y = b j ∣ x = a i ) = P ( b j ∣ a i )       ( i = 1 , ⋯   , r ; j = 1 , ⋯   , s ) P(y|x)=P(y=b_j|x=a_i)=P(b_j|a_i)\ \ \ \ \ (i=1,\cdots,r;j=1,\cdots,s) P(yx)=P(y=bjx=ai)=P(bjai)     (i=1,,r;j=1,,s)

    显然,对于任意的 a i ∈ X a_i \in X aiX 以及 b j ∈ Y b_j\in Y bjY ,以下的不等式成立
    0 ≤ P ( b j ∣ a i ) ≤ 1     ( i = 1 , ⋯   , r ; j = 1 , ⋯   , s ) 0\leq P(b_j|a_i)\leq 1 \ \ \ (i=1,\cdots,r;j=1,\cdots,s) 0P(bjai)1   (i=1,,r;j=1,,s)

    因为信道中有干扰存在,若信道输入为 x = a i x=a_i x=ai 时输出时哪个符号 y y y 事先无法确定,但信道输出一定是 b 1 , ⋅ ⋅ ⋅ , b s b_1,···,b_s b1,,bs 中的一个,即对于任意 a i ∈ X a_i\in X aiX,以下的等式显然成立
    ∑ j = 1 s P ( b i ∣ a i ) = 1      ( i = 1 , ⋯   , r ) \sum_{j=1}^s P(b_i|a_i)=1 \ \ \ \ (i=1,\cdots ,r) j=1sP(biai)=1    (i=1,,r)

    因为信道中有干扰存在,若信道输入为 x = a i x=a_i x=ai 时输出时哪个符号 y y y 事先无法确定,但信道输出一定是 b 1 , ⋅ ⋅ ⋅ , b s b_1,···,b_s b1,,bs 中的一个,即对于任意 a i ∈ X a_i\in X aiX,以下的等式显然成立
    ∑ j = 1 s P ( b i ∣ a i ) = 1      ( i = 1 , ⋯   , r ) \sum_{j=1}^s P(b_i|a_i)=1 \ \ \ \ (i=1,\cdots ,r) j=1sP(biai)=1    (i=1,,r)

    由于信道的干扰使输入符号 x x x 在传输中发生错误,所以可以用传递概率 P ( b j ∣ a i )    ( i = 1 , ⋯   , r ; j = 1 , ⋯   , s ) P(b_j|a_i)\ \ (i=1,\cdots,r;j=1,\cdots,s) P(bjai)  (i=1,,r;j=1,,s) 来表述干扰影响的大小。因此,一般简单的单符号离散信道的数学模型可以用概率空间 [ X , P ( y ∣ x ) , Y ] [X,P(y|x),Y] [X,P(yx),Y] 加以描述。

  2. 信息编码的定义
           将包含 M 种信息的集合 M = { 1 , 2 , ⋯   , M } M=\{1,2,\cdots,M\} M={1,2,,M} 中的每一个信息 m m m 都映射成信道输入字母集合 X = { a 1 , ⋯   , a r } X=\{a_1,\cdots,a_r\} X={a1,,ar} 上的一个长度为 n n n 的序列,即信息编码由映射 ϕ \phi ϕ 定义:
    ϕ : M → X n \phi:M\rightarrow X^n ϕ:MXn

    此时称 ϕ ( m ) \phi(m) ϕ(m) 为信息 m m m 的编码。称
    R = 1 n log ⁡ M R=\frac{1}{n}\log M R=n1logM

    为信息的编码率或称为传送速率

  3. 解码的定义
           当某一信息编码通过信道发送时,基于信道输出的长度为 n n n 的信息序列状态来推断出该信息时属于 M M M 中的哪个信息,这个过程称为 解码 。一般性的解码由映射 φ \varphi φ 定义:
    φ : Y n → M \varphi:Y^n\rightarrow M φ:YnM

    通常称编码与解码对 ( ϕ , φ ) (\phi,\varphi) (ϕ,φ) 为代码。

  4. 无记忆信道的定义
           当将一长度为 n 的输入列送入信道 X = x 1 x 2 ⋯ x n ∈ X n X=x_1x_2\cdots x_n\in X^n X=x1x2xnXn,即发送信息 X X X 时,信道的输出序列 Y = y 1 y 2 ⋯ y n ∈ Y n Y=y_1y_2\cdots y_n\in Y^n Y=y1y2ynYn 由以下概率给出:
    P n ( Y ∣ X ) = ∏ i = 1 n P ( y i ∣ x i ) P^n(Y|X)=\prod_{i=1}^nP(y_i|x_i) Pn(YX)=i=1nP(yixi)

    也就是说在某一时刻 i i i 输出的 y i y_i yi 仅依赖于输入 x i x_i xi 并由此决定,与此刻 i i i 之前以及之后的输入 x i x_i xi 以及输出 y j ( j ≠ i ) y_j(j\neq i) yj(j=i) 均无关。

  5. 错误率
           我们把信息在信道传输过程产生错误,并将接收到的信息进行解码后得到的结果有别于原信息 m m m 的概率
    P r { φ ( ϕ ( m ) ) ≠ m } P_r\{\varphi(\phi(m))\neq m\} Pr{φ(ϕ(m))=m}

    称为对信息 m m m 的错误率。特别当所有的信息等概率发生时,错误率的均值
    P e = 1 M ∑ m ∈ M P r { φ ( ϕ ( m ) ) ≠ m } P_e=\frac{1}{M} \sum_{m\in M}P_r\{\varphi(\phi(m))\neq m\} Pe=M1mMPr{φ(ϕ(m))=m}

    称为解码错误率。

  6. 平均互信息
           我们研究信道的目的是要讨论信道中平均每个符号所能传送的信息量,即信道的信息传输率 R 。经典信息论中的平均互信息 I ( X ; Y ) I(X;Y) I(X;Y) 就是表示接收到符号 Y 后平均每个符号获得的关于 X 的信息量。因此信道的信息传输率就是平均互信息,即
    R = I ( X ; Y ) = H ( X ) − H ( X ∣ Y )       ( b i t / 符 号 ) R=I(X;Y)=H(X)-H(X|Y) \ \ \ \ \ (bit/符号) R=I(X;Y)=H(X)H(XY)     (bit/)

    有时我们所关心的是信道在单位时间内平均传输的信息量。若平均传输一个符号需要 t t t 秒钟,则信道每秒钟平均传输的信息量为
    R t = 1 t I ( X ; Y ) = 1 t H ( X ) − 1 t H ( X ∣ Y )      ( b i t / s ) R_t=\frac{1}{t}I(X;Y)=\frac{1}{t}H(X)-\frac{1}{t}H(X|Y) \ \ \ \ (bit/s) Rt=t1I(X;Y)=t1H(X)t1H(XY)    (bit/s)

    一般称此为信息传输速率。

  7. 信道的信道容量
           假设给定具有迁移概率 P ( b ∣ a ) ( a ∈ X , b ∈ Y ) P(b|a)(a\in X,b\in Y) P(ba)(aX,bY) 的信道 W W W ,并假设输入字母集合 X X X 的符号 a a a 以概率 π ( a ) \pi (a) π(a) 出现。此时互信息量 I ( π ; W ) I(\pi;W) I(π;W) 由下式决定:
    I ( π ; W ) = ∑ a ∈ X ∑ b ∈ Y π ( a ) P ( b ∣ a ) log ⁡ P ( b ∣ a ) ∑ a ∈ X π ( a ) P ( b ∣ a ) I(\pi;W)=\sum_{a\in X}\sum_{b\in Y}\pi(a)P(b|a)\log\frac{P(b|a)}{\sum_{a\in X}\pi(a)P(b|a)} I(π;W)=aXbYπ(a)P(ba)logaXπ(a)P(ba)P(ba)

           进一步,在 X X X 上取不同的概率分布 π \pi π 得到的互信息量的最大值定义为信道 W W W 的信道容量即信道传输率 C ( W ) C(W) C(W) 。即
    C ( W ) = max ⁡ I ( π ; W ) C(W)=\max I(\pi;W) C(W)=maxI(π;W)

    这里信道容量 C ( W ) C(W) C(W) 仅仅依赖于信道的迁移概率 P ( b ∣ a ) P(b|a) P(ba) ,并由此决定。

  8. 信道编码定理
           设离散无记忆信道 [ X , P ( y ∣ x ) , Y ] , P ( y ∣ x ) [X,P(y|x),Y],P(y|x) [X,P(yx),Y],P(yx) 为信道迁移概率,其信道容量为 C ( W ) C(W) C(W),如果信息传送速率 R R R 满足下列不等式,
    R < C ( W ) R<C(W) R<C(W)

    当编码长度 n n n 足够大时,一定存在解码错误率 P e P_e Pe 能够任意小的代码体系。也就是可以在输入 X n X^n Xn 符号集中找到 M ( = 2 n R ) M(=2^{nR}) M(=2nR) 个码字组成的一组码 ( 2 n R , n ) (2^nR,n) (2nR,n) 和相应的解码规则,使解码错误率 P e P_e Pe 能够任意小。反之,如果
    R > C ( W ) R>C(W) R>C(W)

    则无论采用什么样的编码,当编码长度 n n n 足够大时,解码错误率 P e P_e Pe 渐进于 1 。
           信道编码定理指出,如果传送速率严格地小于信道容量,在增加代码长度的情况下能够以任意小的错误率传送信息。


2.量子信息源与冯 · 诺依曼熵


二元经典对称信道

       考虑一种经典无记忆单符号离散信道,其输入与输出的字母集合都是 { 0 , 1 } \{0,1\} {0,1} ,它的迁移概率为
P ( 0 ∣ 0 ) = P ( 1 ∣ 1 ) = 1 − ε P(0|0)=P(1|1)=1-\varepsilon P(00)=P(11)=1ε

P ( 1 ∣ 0 ) = P ( 0 ∣ 1 ) = ε P(1|0)=P(0|1)=\varepsilon P(10)=P(01)=ε

由该迁移概率和集合表示的信道称为二元对称信道,如下图
在这里插入图片描述

二元量子无记忆信息源

       与二元经典对称信道相对应,我们用量子比特 ∣ a ⟩ |a\rangle a 与量子比特 ∣ b ⟩ |b\rangle b 替代比特 0 与比特 1 ,即
∣ a ⟩ = [ a 1 a 2 ] , ∣ b ⟩ = [ b 1 b 2 ] |a\rangle=\left[ \begin{matrix} a_1 \\ a_2 \end{matrix} \right ], |b\rangle=\left[ \begin{matrix} b_1 \\ b_2 \end{matrix} \right ] a=[a1a2],b=[b1b2]

且给自以概率 p p p 1 − p 1-p 1p 独立发生,且当前输出与过去无关的量子信息源称为二元链子无记忆信息源。


量子信息源的密度算子

       我们将量子比特 ∣ a ⟩ |a\rangle a 与量子比特 ∣ b ⟩ |b\rangle b 各自以概率 p p p 1 − p 1-p 1p 发生的量子信息源用被称为密度算子的 2×2 矩阵表示
ρ = p ∣ a ⟩ ⟨ a ∣ + ( 1 − p ) ∣ b ⟩ ⟨ b ∣ \rho=p|a\rangle\langle a|+(1-p)|b\rangle\langle b| ρ=paa+(1p)bb

其中 ⟨ a ∣ \langle a| a ∣ a ⟩ |a\rangle a 的共轭转置,被称为左矢。


如:量子信息源 S 的两个 qubit
∣ a ⟩ = [ 1 0 ] , ∣ b ⟩ = [ 1 2 1 2 ] |a\rangle=\left[ \begin{matrix} 1 \\ 0 \end{matrix} \right], |b\rangle=\left[ \begin{matrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{matrix} \right] a=[10],b=[2 12 1]

且各自以概率 p p p 1 − p 1-p 1p 输出,此时的量子信息源 S 的密度算子为
ρ = p [ 1 0 ] [ 1 0 ] + ( 1 − p ) [ 1 2 1 2 ] [ 1 2 1 2 ] = [ 1 + p 2 1 − p 2 1 − p 2 1 − p 2 ] \rho=p\left[ \begin{matrix} 1 \\ 0 \end{matrix} \right] \left[ \begin{matrix} 1 & 0 \end{matrix} \right] +(1-p) \left[ \begin{matrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{matrix} \right] \left[ \begin{matrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{matrix} \right] =\left[ \begin{matrix} \frac{1+p}{2} & \frac{1-p}{2} \\ \frac{1-p}{2} & \frac{1-p}{2} \end{matrix} \right] ρ=p[10][10]+(1p)[2 12 1][2 12 1]=[21+p21p21p21p]

       以上考虑了输出 2 种 qubit 的二元量子信息源,用同样的方法我们能够考虑输出 r 种 qubit 的 r 元量子信息源。一般情况下,在 r 元量子信息源的场合,我们把 qubit 考虑成 r 维的复数矢量,同时密度算子为 r × r r\times r r×r 矩阵。


冯 · 诺依曼熵

       假设对应于 r 元量子信息源的密度算子为 ρ \rho ρ ρ \rho ρ 的固有值(本征值)为 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn ,则冯 · 诺伊曼熵定义为
H ( ρ ) = − ∑ i = 1 r λ i log ⁡ λ i H(\rho)=-\sum_{i=1}^r\lambda_i\log\lambda_i H(ρ)=i=1rλilogλi

       0 和 1 等概率发生的经典信息源的香农熵为 1 ,两个 qubit 各自以概率 p p p 1 − p 1-p 1p 发生的量子信息源的冯 · 诺伊曼熵,一般情况下小于等于香农熵。


3.量子信道与量子信道容量


       量子信道有多种类型。这里我们介绍一种最常用的模型,该模型拥有作为输入的字母集合是量子比特有限集合 X :
X = { ∣ a 1 ⟩ , ∣ a 2 ⟩ , ⋯   , ∣ a N ⟩ } X=\{|a_1\rangle,|a_2\rangle,\cdots,|a_N\rangle\} X={a1,a2,,aN}

可能的输出结果的字母集合是量子比特有限集合 Y :
Y = { ∣ b i ⟩ , ∣ b 2 ⟩ , ⋯   , ∣ b N ⟩ } Y=\{|b_i\rangle,|b_2\rangle,\cdots,|b_N\rangle\} Y={bi,b2,,bN}

即将 ∣ a ⟩ ∈ X |a\rangle\in X aX 送入信道,而信道的输出由密度算子 ρ ( ∣ a ⟩ ) \rho(|a\rangle) ρ(a) 完全决定输出结果的量子信道 Q。

       量子信道 Q 的 信道编码 映射 ϕ \phi ϕ 被定义为:将包含 M 种信息的集合 M = { 1 , 2 , ⋯   , M } M=\{1,2,\cdots,M\} M={1,2,,M} 中的每一个信息 m m m 都映射到有限集合 X X X 上的一个长度为 n n n 的 qubit 序列。与经典信道编码同理,这个编码的传送速率由
R = 1 n log ⁡ M R=\frac{1}{n}\log M R=n1logM

所决定。

       在解码上,该信道也与经典信道解码体系相同,映射 φ \varphi φ 将由基于信道输出长度为 n n n 的 qubit 密度算子到属于 M 信息上的映射决定。我们成这样的编码与解码对 ( ϕ , φ ) (\phi,\varphi) (ϕ,φ) 为代码体系。解码的出错率由:
p e = 1 M ∑ m ∈ M p r { φ ( ρ n ( ϕ ( m ) ) ) ≠ m } p_e=\frac{1}{M}\sum_{m\in M}p_r\{\varphi(\rho^n(\phi(m)))\neq m\} pe=M1mMpr{φ(ρn(ϕ(m)))=m}

决定。其中 ρ n ( ϕ ( m ) ) \rho^n(\phi(m)) ρn(ϕ(m)) 表示长度为 n 的信道输入序列 ϕ ( m ) \phi(m) ϕ(m) 与输出序列的密度算子。


量子信道 Q 的信道容量

       假设信道 Q 的输入字母集合 X 为
X = { ∣ a 1 ⟩ , ∣ a 2 ⟩ , ⋯   , ∣ a N ⟩ } X=\{|a_1\rangle,|a_2\rangle,\cdots,|a_N\rangle\} X={a1,a2,,aN}

当将 ∣ a i ⟩ |a_i\rangle ai 输入信道后,将信道的输出视为信息源的输出,其密度算子用 ρ i \rho_i ρi 表示。此时如果利用 X 上的概率分布 π ( i ) \pi(i) π(i) 求出 ρ i \rho_i ρi 的平均值,则均值为
ρ ‾ = ∑ i = 1 N π ( i ) ρ i \overline{\rho}=\sum_{i=1}^N\pi(i)\rho_i ρ=i=1Nπ(i)ρi

这个结果与以概率 π ( i ) \pi(i) π(i) ∣ a i ⟩ |a_i\rangle ai 输入信道,把信道的输出看成是由密度算子 ρ ( ∣ a ⟩ ) \rho(|a\rangle) ρ(a) 完全决定的量子信息源输出的均值 ρ ‾ \overline{\rho} ρ 相等。与经典信息论中的互信息量的对应关系由下列等式给出:
Δ H ( π , Q ) = H ( ρ ‾ ) − ∑ i π ( i ) H ( ρ i ) \Delta H(\pi,Q)=H(\overline{\rho})-\sum_i\pi(i)H(\rho_i) ΔH(π,Q)=H(ρ)iπ(i)H(ρi)

其中 H ( ⋅ ) H(·) H() 表示冯 · 诺伊曼熵。量子信道容量 C 被定义为取对应于 Δ H ( π , Q ) \Delta H(\pi,Q) ΔH(π,Q) 的输入字母集合上的概率分布最大值,即
C ( Q ) = m a x Δ H ( π , Q ) C(Q)=max\Delta H(\pi,Q) C(Q)=maxΔH(π,Q)

量子信道编码定理

       设离西安无记忆量子信道 [ X , ρ ( ∣ a ⟩ ) , Y ] [X,\rho(|a\rangle),Y] [X,ρ(a),Y] 的输出由密度算子 ρ ( ∣ a ⟩ ) \rho(|a\rangle) ρ(a) 完全决定,信道容量为 C ( Q ) C(Q) C(Q) 。如果传送速率满足不等式:
R < C ( Q ) R<C(Q) R<C(Q)

当编码长度 n 足够大时,一定存在解码错误率 p e p_e pe 能够任意小的代码体系。反之,如果
R > C ( Q ) R>C(Q) R>C(Q)

则无论采用什么样的编码,当编码长度 n 足够大时,解码错误率 p e p_e pe 渐进于 1 。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值