量子计算基础(一)

量子计算基础(一)


1. 量子力学的几个基本特性


       量子是一个数学概念,它并不表示某种特定的粒子,离散变化的最小单元就称为量子。离散变化是指其变量值可以按一定顺序一一列举,通常以整数位取值,如 1,2 ,3 … 。和离散变化相对应的是连续变化 ,连续是指取值可以为 1.1 ,1.212 ,等,它可以取值为任何数。

       离散变化是微观世界的一个本质特征,微观世界中的离散变化包括两类:
{ 物 质 组 成 的 离 散 变 化 物 理 量 的 离 散 变 化 \begin{cases} \pmb{物质组成}的离散变化 \\ \pmb{物理量}的离散变化 \end{cases} {物质组成物理量

  1. 物质组成的离散变化
           例如,光是由一个个光子组成的,不能分出半个光子、1/3个光子,所以光子就是光的量子。阴极射线是由一个个电子组成的,你不能分出半个电子、1/3个电子,所以电子就是阴极射线的量子。所以我们可以发现,对于不同的事物,描述量子时对应的粒子是不同的。

  2. 物理量的离散变化
           氢原子中电子的能量只能取 -13.6 eV 或者它的 1/4、1/9、1/16 等等,就是-13.6 eV除以某个自然数的平方(-13.6/n2 eV,n可以取1、2、3、4、5等),而不能取其他值,氢原子中电子的能量是量子化的,位于一个个“能级”上面。每一种原子中电子的能量都是量子化的,这是一种普遍现象。
    在这里插入图片描述

    氢原子中电子能级

       为了准确描述微观世界,科学家们创建了一门新的理论——量子力学。它其实是为了强调离散变化在微观世界中的普遍性。量子力学出现后,人们把传统的牛顿力学称为“经典力学”。

       量子力学和信息科学的交叉构成了一个新的学科——量子信息,量子信息的目的,就是利用量子力学的特性,实现经典信息科学中实现不了的功能。信息科学的研究包括两大部分,计算和通信,而量子信息的研究也可以分为两部分,即 量子计算量子通信 。其中量子计算的研究目前包括量子因数分解和量子搜索,量子通信的研究包括量子密码术和量子隐形传态。

       量子信息根据量子力学的三个基本特性来实现传统信息科学不能实现的功能。这三个特性分别是,叠加、测量和纠缠。

  • 叠加
           叠加是指,如果两个状态是一个体系允许出现的状态,那么他们的任意线性叠加也是这个体系允许出现的状态。在量子力学中表示的意思就是,如果用 ∣ 0 ⟩ |0\rangle 0 ∣ 1 ⟩ |1\rangle 1 来表示两个基本状态,那么他么的线性叠加,即 α ∣ 1 ⟩ + β ∣ 1 ⟩ \alpha|1\rangle+\beta|1\rangle α1+β1 也是这个系统可以存在的状态之一。

  • 测量
           测量是指,我们在对一个量子状态进行测量之前,要先确定一对基组,也就是要先确定基于哪两个基本状态进行测量。之后对量子进行测量时,如果量子本身处于基组中的某个状态,那么测量的结果就是其本自身。但是如果量子处于两个基组的叠加态,那么测量的结果会以一定的概率坍缩到基组中的某一个状态。

  • 纠缠
           如果两个量子的整体状态可以表示为这两个量子状态的张量积,那么称这个整体处于直积态,否则称它们处于纠缠态。处于纠缠态的两个量子会相互影响,当对其中的一个量子进行测量时,另外一个量子的状态也会坍缩到某个状态。

量子计算所研究的两个问题为:

  • 量子因数分解:将合数分解为两个质因数的乘积。该问题是破解 RSA 加密的基本问题,在传统计算机中,受限于计算能力,该问题基本不可解。但是通过量子计算,我们可以在极短的时间内解决该问题。

  • 量子搜索:对无规律排列数进行搜索。该应用相对于传统的搜索算法,极大的提高了搜索效率。

量子通信研究的两个问题为:

  • 量子隐形传态:将一个量子的状态传递给另外一个量子,为量子通信的实现提供了基础。

  • 量子密码术:利用量子力学的特性,实现绝对安全的信息传输。


2. 线性代数与矢量空间


       量子计算是建立在量子比特(qubit), 量子门(quantum gates)之上, 并结合数学描述与物理实现而完成的。

       任意孤立物理系统都有一个系统状态空间, 该状态空间是整个系统可能的状态的集合,用线性代数的语言描述这个状态空间就是一个定义了内积的复向量空间——Hilbert 空间。对加法和数乘封闭的向量集合称为 向量空间,而定义了内积的向量空间称为 内积空间,如果一个内积空间具有了完备性,那么我么称该空间是 Hilbert 空间(希尔伯特空间)。

        量子比特 是量子信息的基础,它对于量子信息的重要性和经典比特对于经典信息科学的重要性一样,它是经典 bit 的量子对应,但是它相对于经典比特有更多的特点。一个量子比特是一个有两个基态的量子系统,该系统可以通过两个基态表示系统可能处于的所有状态,我们用一个二维的希尔伯特空间描述一个量子比特的状态空间。

       对于量子比特的状态,我们可以用二维希尔伯特空间中的一个向量描述,该向量又称为 态矢量 ——即表示量子状态的矢量。如果用列向量描述,我们记为 ∣ ⋅ ⟩ |·\rangle ,也称为 右矢;如果用行向量表示,我们记为 ⟨ ⋅ ∣ \langle ·| ,称为 左矢 。左矢和右矢表示同一个状态,习惯上我们用右矢来描述一个量子比特的状态。

       对于量子比特的讨论总是基于某对固定的基态的。如果记该空间的一组基为 { ∣ 0 ⟩ , ∣ 1 ⟩ } \{|0\rangle ,|1\rangle \} {0,1} ,这个量子比特可以处在 ∣ 0 ⟩ |0\rangle 0 ∣ 1 ⟩ |1\rangle 1 这两个状态。根据叠加原理,它也可以处于叠加态 ∣ ϕ ⟩ = c 1 ∣ 0 ⟩ + c 2 ∣ 1 ⟩ |\phi\rangle=c_1|0\rangle+c_2|1\rangle ϕ=c10+c21 , 其中 c 1 c_1 c1 c 2 c_2 c2 是复数,且满足 ∣ c 1 ∣ 2 + ∣ c 2 ∣ 2 = 1 |c_1|^2+|c_2|^2=1 c12+c22=1。所以我们可以用这两个基态表示任意一种量子的状态。

       线性代数研究矢量空间及其上的线性操作,这与量子力学中的态空间相对应。因此,线性代数可以作为量子力学的有效表述方法。矢量空间是线性代数的基本元素,我们研究的一般是有限维度的矢量空间,记作 C n C^n Cn。在该空间中,一个矢量是由 n n n 个复数所指定的,狄拉克用线性代数表示量子力学的矢量空间,对矢量记为
∣ α ⟩ = [ a 1 a 2 ⋮ a n ] |\alpha\rangle=\left[ \begin{matrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{matrix} \right] α=a1a2an

称为态矢,因为它是列向量,我们也称为右矢。该矢量的共轭转置(对每个元素去共轭复数后,对整体转置)称为其对应的左矢,是一个行向量,表示为 ⟨ α ∣ = ( ∣ α ⟩ ) H = ( a 1 ∗ , a 2 ∗ , ⋯   , a n ∗ ) \langle\alpha|=(|\alpha\rangle)^H=(a_1^*,a_2^*,\cdots,a_n^*) α=(α)H=(a1,a2,,an)

       态矢量有和向量一样的加法和数乘性质,设 ∣ α ⟩ , ∣ β ⟩ , ∣ γ ⟩ |\alpha\rangle,|\beta\rangle,|\gamma\rangle α,β,γ,则有:
∣ α ⟩ + ∣ β ⟩ = ∣ β ⟩ + ∣ α ⟩ ( 加 法 交 换 律 ) ∣ α ⟩ + ∣ β ⟩ ) + ∣ γ ⟩ = ∣ α ⟩ + ( ∣ β ⟩ + ∣ γ ⟩ ) ( 加 法 结 合 律 ) ∣ α ⟩ + 0 = ∣ α ⟩ ( 存 在 加 法 单 位 元 ) ∣ α ⟩ + ∣ β ⟩ = 0 ⇒ ∣ β ⟩ = − ∣ α ⟩ ( 存 在 加 法 逆 元 ) ∣ α ⟩ = 1 ∣ α ⟩ ( 存 在 单 位 元 ) a ( b ∣ α ⟩ ) = ( a b ) ∣ α ⟩ ( 结 合 律 ) ( a + b ) ∣ α ⟩ = a ∣ α ⟩ + b ∣ α ⟩ ( 第 一 分 配 律 ) a ( ∣ α ⟩ + ∣ β ⟩ ) = a ∣ α ⟩ + a ∣ β ⟩ ( 第 二 分 配 律 ) \begin{aligned} & |\alpha\rangle+|\beta\rangle=|\beta\rangle+|\alpha\rangle (加法交换律)\\ & |\alpha\rangle+|\beta\rangle)+|\gamma\rangle=|\alpha\rangle+(|\beta\rangle+|\gamma\rangle) (加法结合律) \\ & |\alpha\rangle+0=|\alpha\rangle (存在加法单位元)\\ & |\alpha\rangle+|\beta\rangle=0 \Rightarrow |\beta\rangle=-|\alpha\rangle(存在加法逆元)\\ & |\alpha\rangle = 1|\alpha\rangle(存在单位元)\\ & a(b|\alpha\rangle)=(ab)|\alpha\rangle(结合律)\\ & (a+b)|\alpha\rangle=a|\alpha\rangle+b|\alpha\rangle(第一分配律)\\ & a(|\alpha\rangle+|\beta\rangle)=a|\alpha\rangle+a|\beta\rangle(第二分配律) \end{aligned} α+β=β+αα+β)+γ=α+(β+γ)α+0=αα+β=0β=αα=1αa(bα)=(ab)α(a+b)α=aα+bαa(α+β)=aα+aβ


2.1 态矢量的相关运算
  1. 内积
           在态矢量空间中按一定顺序选取任意两个态矢,我们定义一种运算称为 内积 ,记为:
    c = ⟨ α ∣ β ⟩ = ( ∣ α ⟩ , ∣ β ⟩ ) = ( ∑ i a i ∗ ⟨ α i ∣ ) ( ∑ i b i ∗ ∣ β i ⟩ ) = ∑ i a i ∗ b i ⟨ α i ∣ β i ⟩ c=\langle\alpha|\beta\rangle=(|\alpha\rangle,|\beta\rangle)=(\sum_ia_i^*\langle\alpha_i|)(\sum_ib_i^*|\beta_i\rangle)=\sum_ia_i^*b_i\langle\alpha_i|\beta_i\rangle c=αβ=(α,β)=(iaiαi)(ibiβi)=iaibiαiβi

    可以看出,内积的运算结果是一个数。


  2.        矢量 ∣ α ⟩ |\alpha\rangle α 和它自身的内积 ⟨ α ∣ α ⟩ \langle\alpha|\alpha\rangle αα 是一个大于等于零的数,称为矢量 ∣ α ⟩ |\alpha\rangle α模方,记作 ⟨ α ∣ α ⟩ = ∣ α ∣ 2 \langle\alpha|\alpha\rangle=|\alpha|^2 αα=α2

            ∥ ∣ α ⟩ ∥ = ⟨ α ∣ α ⟩ = ∑ i ∣ a i ∣ 2 \||\alpha\rangle\|=\sqrt{\langle\alpha|\alpha\rangle}=\sqrt{\sum_i|a_i|^2} α=αα =iai2 ,定义为矢量的 ,其物理意义为矢量 ∣ α ⟩ |\alpha\rangle α 的长度。

  3. 归一化和归一化矢量
           用矢量初一自己的模称为对矢量进行归一化,即
    ∣ α ^ ⟩ = ∣ α ⟩ ∥ ∣ α ⟩ ∥ |\hat{\alpha}\rangle=\frac{|\alpha\rangle}{\||\alpha\rangle\|} α^=αα

    归一化后的矢量模为 1 ,因此归一化矢量也称为单位矢量

  4. 正交

           若两个矢量 ∣ α ⟩ |\alpha\rangle α β ⟩ \beta\rangle β 的内积为零,即 ⟨ α ∣ β ⟩ = 0 \langle\alpha|\beta\rangle=0 αβ=0 ,称 ∣ α ⟩ |\alpha\rangle α ∣ β ⟩ |\beta\rangle β 正交

  5. 正交归一

           若一组矢量矢量 ∣ α 1 ⟩ , ∣ α 2 ⟩ , ⋯   , ∣ α n ⟩ |\alpha_1\rangle,|\alpha_2\rangle,\cdots,|\alpha_n\rangle α1,α2,,αn ,满足:
    ⟨ α i ∣ α j ⟩ = δ i j = { 1 i = j 0 i ≠ j      i , j = 1 , 2 , ⋯   , n \langle\alpha_i|\alpha_j\rangle=\delta_{ij}= \begin{cases} 1 & i=j \\ 0 & i\neq j \end{cases} \ \ \ \ i,j=1,2,\cdots,n αiαj=δij={10i=ji=j    i,j=1,2,,n

    则称 这组矢量是正交归一 的,即每个矢量是归一化矢量(单位矢量),两两矢量都正交。

  6. 线性独立
           如果矢量空间中 n n n 个矢量的集合 c c c 满足
    k 1 ∣ α 1 ⟩ + k 2 ∣ α 2 ⟩ + ⋯ + k m ∣ α m ⟩ = 0 k_1|\alpha_1\rangle+k_2|\alpha_2\rangle+\cdots+k_m|\alpha_m\rangle=0 k1α1+k2α2++kmαm=0

    k 1 = k 2 = ⋯ = k m = 0 k_1=k_2=\cdots=k_m=0 k1=k2==km=0 则称该矢量的集合 线性独立 。满足正交归一条件的矢量集合是线性独立的。

  7. 维数(维度)
           矢量空间的维度或 维数 为线性独立的矢量的最大数目,可以类比为一组向量中极大无关组的中所含向量的个数。同一矢量空间的任意两组线性独立的基一定有相同的元素个数。

  8. 矢量的完备集
           若 n n n 维矢量空间中的任意一个矢量 ∣ α ⟩ |\alpha\rangle α 都可以表示成矢量基 ∣ α 1 ⟩ , ∣ α 2 ⟩ , ⋯   , ∣ α n ⟩ |\alpha_1\rangle,|\alpha_2\rangle,\cdots,|\alpha_n\rangle α1,α2,,αn 的线性组合,即
    ∣ α ⟩ = λ 1 ∣ α 1 ⟩ + λ 2 ∣ α 2 ⟩ + ⋯ + λ n ∣ λ n ⟩ |\alpha\rangle=\lambda_1|\alpha_1\rangle+\lambda_2|\alpha_2\rangle+\cdots+\lambda_n|\lambda_n\rangle α=λ1α1+λ2α2++λnλn

    则称这组基矢为 矢量完备集 。数 λ i \lambda_i λi 称为矢量 ∣ α ⟩ |\alpha\rangle α 在基矢 ∣ α 1 ⟩ , ∣ α 2 ⟩ , ⋯   , ∣ α n ⟩ |\alpha_1\rangle,|\alpha_2\rangle,\cdots,|\alpha_n\rangle α1,α2,,αn 上的分量,这些分量是唯一的。

           且对于正交归一基,有 λ i = ⟨ α i ∣ α ⟩ \lambda_i=\langle\alpha_i|\alpha\rangle λi=αiα ,这是因为如果在等式的左边乘以一个 ∣ α i ⟩ |\alpha_i\rangle αi ,根据正交归一基的性质,我们就可以得到这个结论。分量的集合 ( λ 1 , λ 2 , ⋯   , λ n ) (\lambda_1,\lambda_2,\cdots,\lambda_n) (λ1,λ2,,λn) 构成矢量 ∣ α ⟩ |\alpha\rangle α 的一个表示。即
    ∣ α ⟩ = [ λ 1 λ 2 ⋮ λ n ] |\alpha\rangle= \left[\begin{matrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{matrix}\right] α=λ1λ2λn

  9. 外积
           用 ∣ α ⟩ ⟨ β ∣ |\alpha\rangle\langle\beta| αβ 表示两个矢量的 外积。从线性代数的知识我们可以知道,外积是一个矩阵。我们可以得到下面的等式:
    ( ∣ α ⟩ ⟨ β ∣ ) ∣ γ ⟩ = ∣ α ⟩ ( ⟨ β ∣ γ ⟩ ) = ( ⟨ β ∣ γ ⟩ ) ∣ α ⟩ (|\alpha\rangle\langle\beta|)|\gamma\rangle=|\alpha\rangle(\langle\beta|\gamma\rangle)=(\langle\beta|\gamma\rangle)|\alpha\rangle (αβ)γ=α(βγ)=(βγ)α


2.2 算符及相关概念
  1. 算符
           对于两个矢量空间 V V V W W W ,将矢量 ∣ v ⟩ ∈ V |v\rangle \in V vV ,映射到 ∣ w ⟩ ∈ W |w\rangle \in W wW,将该映射称为 算符 A A A,表示为:
    A : V → W A:V \rightarrow W AVW

    ∣ w ⟩ = A ∣ v ⟩ |w\rangle = A|v\rangle w=Av

    算符表示的是一种映射关系,我们可以类比为函数的作用(都是将一个量映射为另一个量)。

  2. 线性算符
           对于两个矢量空间 V V V W W W ,对于任意矢量 ∣ v ⟩ ∈ V |v\rangle \in V vV ∣ w ⟩ ∈ W |w\rangle \in W wW ,如果有算符满足下列等式
    A ( a ∣ v ⟩ + b ∣ w ⟩ ) = a ( A ∣ v ⟩ ) + b ( A ∣ w ⟩ ) A(a|v\rangle+b|w\rangle)=a(A|v\rangle)+b(A|w\rangle) A(av+bw)=a(Av)+b(Aw)

    则称算符 A A A线性算符
    如果两个矢量都在空间 V V V 种,我们就说线性算符 A A A 定义在线性空间 V V V 上。

  3. 单位算符
           单位算符 是最简单的线性算符,它满足
    I v ∣ v ⟩ = ∣ v ⟩ I_v|v\rangle=|v\rangle Ivv=v

  4. 零算符
           若将任意矢量 ∣ v ⟩ ∈ V |v\rangle \in V vV 映射到零矢量 0 0 0 上,满足 O ∣ v ⟩ = 0 O|v\rangle = 0 Ov=0 则称 O O O零算符

  5. 算符相等
           若 A ∣ v ⟩ = B ∣ v ⟩ A|v\rangle=B|v\rangle Av=Bv ,则称这两个算符是相等的。

  6. 算符之和
           两个线性算符的叠加 C = A + B C=A+B C=A+B 也是线性的,其定义为:
    C ∣ v ⟩ = ( A + B ) ∣ v ⟩ = A ∣ v ⟩ + B ∣ v ⟩ C|v\rangle=(A+B)|v\rangle=A|v\rangle+B|v\rangle Cv=(A+B)v=Av+Bv

  7. 算符之积
           两个 线性算符 的积 D = A B D=AB D=AB 定义为先将 B B B 作用于 ∣ v ⟩ |v\rangle v ,再将 A A A 作用于 B ∣ v ⟩ B|v\rangle Bv,即:
    D ∣ v ⟩ = ( A B ) ∣ v ⟩ = A ( B ∣ v ⟩ ) D|v\rangle=(AB)|v\rangle=A(B|v\rangle) Dv=(AB)v=A(Bv)

    一般来说 A B ≠ B A AB \neq BA AB=BA

  8. 算符的表示
           上面讲了这么多,算符到底是什么呢?我们通过一个例子来看看。一开始我们就说了,算符可以表示为一个映射,即 ∣ w ⟩ = A ∣ v ⟩ |w\rangle = A|v\rangle w=Av,现在假设算符 A A A,它作用于一个一般的矢量 ∣ α ⟩ ∈ V |\alpha\rangle \in V αV,得到 ∣ β ⟩ |\beta\rangle β,即 ∣ β ⟩ = A ∣ α ⟩ |\beta\rangle=A|\alpha\rangle β=Aα 。而每个矢量都可以表示为一组矢量完备集的线性组合,若存在一组正交归一的矢量完备集 { ∣ v 1 ⟩ , ∣ v 2 ⟩ , ⋯   , ∣ v n ⟩ } \{|v_1\rangle,|v_2\rangle,\cdots,|v_n\rangle\} {v1,v2,,vn} ,则我们可以用该完备集表示 ∣ α ⟩ |\alpha\rangle α ∣ β ⟩ |\beta\rangle β ,即:
    ∣ α ⟩ = ∑ i a i ∣ v i ⟩ , ∣ β ⟩ = ∑ i b i ∣ v i ⟩ |\alpha\rangle=\sum_i a_i|v_i\rangle,|\beta\rangle=\sum_ib_i|v_i\rangle α=iaiviβ=ibivi

           通过上面矢量完备集的描述我们知道,矢量在完备集的每个分量可以由下式得到
    b i = ⟨ v i ∣ β ⟩ b_i=\langle v_i|\beta\rangle bi=viβ

           因为 ∣ β ⟩ = A ∣ α ⟩ |\beta\rangle=A|\alpha\rangle β=Aα ,所以上式可以写为
    ⟨ v i ∣ A α ⟩ \langle v_i|A\alpha \rangle viAα

           根据上面的条件,我们可以进一步得到
    b i = ⟨ v i ∣   ( A ∑ j a j ∣ v j ⟩ ) b_i=\langle v_i| \ (A\sum_j a_j |v_j\rangle) bi=vi (Ajajvj)

           由于 a j a_j aj 是一个数,因此可以化简为
    b i = ⟨ v i ∣   ( ∑ j a j A ∣ v j ⟩ ) b_i=\langle v_i| \ (\sum_j a_j A |v_j\rangle) bi=vi (jajAvj)

           将矢量 ⟨ v i ∣ \langle v_i| vi 乘入可得

    b i = ∑ j a j ⟨ v i ∣   ( A ∣ v j ⟩ ) b_i=\sum_j a_j \langle v_i| \ (A |v_j\rangle) bi=jajvi (Avj)

           现在我们得到了通过完备集表示得 ∣ α ⟩ |\alpha\rangle α ∣ β ⟩ |\beta\rangle β 时,它们的系数的关系,即当 ∣ β ⟩ = A ∣ α ⟩ |\beta\rangle=A|\alpha\rangle β=Aα 时, b i b_i bi 可以表示为 a j a_j aj 、算符 A A A 及完备集的某种关系,现在,如果我们令 A i j = ⟨ v i ∣   ( A ∣ v j ⟩ ) A_{ij}=\langle v_i| \ (A |v_j\rangle) Aij=vi (Avj) ,则
    b i = ∑ j A i j a j b_i=\sum_j A_{ij} a_j bi=jAijaj

           如果我们能够知道每个 A i j A_{ij} Aij 的值,那么我们就能用上式根据 ∣ α ⟩ |\alpha\rangle α 很快算出 b i b_i bi ,也就可以求出 ∣ β ⟩ |\beta\rangle β 的表示。

           我们可以将矩阵元 A i j = ⟨ v i ∣   ( A ∣ v j ⟩ ) A_{ij}=\langle v_i| \ (A |v_j\rangle) Aij=vi (Avj) 简写为 A i j = ⟨ v i ∣ A ∣ v j ⟩ A_{ij}=\langle v_i| A |v_j\rangle Aij=viAvj

  9. 算符的矩阵表示
           通过上面的讨论可知,利用一组完备矢量集,我们可以将算符表示成一个方阵,如果用完备集表示 ∣ α ⟩ |\alpha\rangle α 为:
    ∣ α ⟩ = [ a 1 a 2 ⋮ a n ] |\alpha\rangle= \left[\begin{matrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{matrix}\right] α=a1a2an

           那么根据
    b i = ∑ j A i j a j b_i=\sum_j A_{ij} a_j bi=jAijaj

           我们可以将 ∣ β ⟩ |\beta\rangle β 表示为
    ∣ β ⟩ = [ b 1 b 2 ⋮ b n ] = [ A 11 A 12 ⋯ A 1 n A 21 A 22 ⋯ A 2 n ⋮ ⋮ ⋱ ⋮ A n 1 A n 2 ⋯ A n n ] [ a 1 a 2 ⋮ a n ] |\beta\rangle= \left[\begin{matrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{matrix}\right]= \left[\begin{matrix} A_{11} & A_{12} & \cdots &A_{1n} \\ A_{21} & A_{22} & \cdots &A_{2n} \\ \vdots & \vdots &\ddots & \vdots\\ A_{n1} & A_{n2} & \cdots &A_{nn} \end{matrix}\right] \left[\begin{matrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{matrix}\right] β=b1b2bn=A11A21An1A12A22An2A1nA2nAnna1a2an

  10. 投影算符
           投影算符 是指将一个矢量 ∣ γ ⟩ |\gamma\rangle γ投影到另一个方向 ∣ α ⟩ |\alpha\rangle α 上面,得到的矢量和 ∣ α ⟩ |\alpha\rangle α 方向相同,但是系数为 ∣ γ ⟩ |\gamma\rangle γ ∣ α ⟩ |\alpha\rangle α 的内积。我们可以用 ∣ β ⟩ |\beta\rangle β 表示投影后的矢量,用 P α P_{\alpha} Pα 表示投影算符,可以描述为
    ∣ β ⟩ = P α ∣ γ ⟩ = ∣ α ⟩ ⟨ α ∣ γ ⟩ = ⟨ α ∣ γ ⟩ ∣ α ⟩ |\beta\rangle=P_{\alpha}|\gamma\rangle=|\alpha\rangle\langle\alpha|\gamma\rangle=\langle\alpha|\gamma\rangle|\alpha\rangle β=Pαγ=ααγ=αγα

  11. 逆算符
           线性算符 A A A逆算符 定义为
    A B = B A = I AB=BA=I AB=BA=I

           则算符 B B B 称为 A A A 的逆算符,记为 B = A − 1 B=A^{-1} B=A1

    定理

    逆算符存在的充分必要条件det(A)=0(det(A)表示矩阵 A 的行列式)。

  12. 厄米算符
           对于希尔伯特空间 H H H 中的任意线性算符 A A A , 在 H H H 中存在唯一的线性算符 A H A^H AH , 称为 A A A伴随厄米共轭算符 。算符使在空间 H 中的所有矢量 ∣ α ⟩ |\alpha\rangle α ∣ β ⟩ |\beta\rangle β 满足以下关系
    ⟨ α ∣ A β ⟩ = ⟨ A H α ∣ β ⟩ \langle\alpha|A\beta\rangle=\langle A^H\alpha|\beta\rangle αAβ=AHαβ

    厄米算符的性质:
    ⟨ A α ∣ β ⟩ = ⟨ α A H ∣ β ⟩ \langle A\alpha|\beta\rangle=\langle \alpha A^H|\beta\rangle Aαβ=αAHβ

    ( A B ) H = B H A H (AB)^H=B^H A^H (AB)H=BHAH

    ( A + B ) H = A H + B H (A+B)^H=A^H+B^H (A+B)H=AH+BH

    ( A H ) H = A (A^H)^H=A (AH)H=A

  13. 幺正算符
           如果算符 U U U 存在如下关系
    U U H = U H U = I UU^H=U^HU=I UUH=UHU=I

    U U U 被称为是 幺正算符,即幺正算符的伴随就是它的逆。
    性质:
    1. 若 U 是幺正的, 则 U H U^H UH , U − 1 U^{-1} U1 也是幺正的。
    2. 两个幺正算符 U U U V V V 的乘积也是幺正的。
    3. 幺正算符可以保持两个矢量之间的内积不变。

  14. Pauli 算符
           我们定义四个 Pauli 门如下:
    σ 0 = I = [ 1 0 0 1 ] \sigma_0=I=\left[\begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix}\right] σ0=I=[1001]

    σ 1 = σ x = X = [ 0 1 1 0 ] \sigma_1=\sigma_x=X=\left[\begin{matrix} 0 & 1 \\ 1 & 0 \\ \end{matrix}\right] σ1=σx=X=[0110]

    σ 2 = σ y = Y = [ 0 − i i 0 ] \sigma_2=\sigma_y=Y=\left[\begin{matrix} 0 & -i \\ i & 0 \\ \end{matrix}\right] σ2=σy=Y=[0ii0]

    σ 3 = σ z = Z = [ 1 0 0 − 1 ] \sigma_3=\sigma_z=Z=\left[\begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix}\right] σ3=σz=Z=[1001]

           Pauli 算符都是幺正算符,并且 Pauli 算符的平方都是单位矩阵。

  15. 算符的本征值和本征矢量
           如果线性算符 A A A 和矢量 ∣ α ⟩ |\alpha\rangle α 满足如下关系
    A ∣ α ⟩ = λ ∣ α ⟩ A|\alpha\rangle=\lambda|\alpha\rangle Aα=λα

           其中 λ \lambda λ 称为对应于 本征矢量 ∣ α ⟩ |\alpha\rangle α本征值 。该方程称为本征方程。本征值与本征矢量和线性代数中的特征值与特征向量属于同一个概念,我们可以类比学习。


2.3 基矢变换和谱分解
  1. 表象
           在量子中,取定的一组矢量完备集 { ∣ v 1 ⟩ , ∣ v 2 ⟩ , ⋯   , ∣ v n ⟩ } \{|v_1\rangle,|v_2\rangle,\cdots,|v_n\rangle\} {v1,v2,,vn} 被称为一个 表象,每个矢量都可以表示为表象的线性组合。

           表象之间可以互相转化,通过一个幺正变换 S S S ,可以从正交归一基 v i v_i vi 变化为 ∣ v i ′ ⟩ |{v_i}^{'}\rangle vi ,即
    ∣ v i ′ ⟩ = ∑ j S i j ∣ v i ⟩ , i = 1 , 2 , ⋯   , n |{v_i}^{'}\rangle=\sum_j S_{ij} |v_i\rangle,i=1,2,\cdots,n vi=jSijvii=1,2,,n

           对于一个一般的矢量 ∣ α ⟩ = ∑ i a i ∣ v i ⟩ |\alpha\rangle=\sum_i a_i|v_i\rangle α=iaivi ,在新的基矢中可以表示为(可以理解为两个极大无关组用过渡矩阵来互相表示):
    ∣ α ⟩ = ∑ j a j ′ ∣ v i ′ ⟩ = ∑ i j a j ′ S i j ∣ v i ⟩ |\alpha\rangle=\sum_j a_j^{'}|v_i^{'}\rangle= \sum_{ij}a_j^{'}S_{ij}|v_i\rangle α=jajvi=ijajSijvi

  2. 对角表象谱分解
           我们称算符 A A A对角表象 为:
    A = ∑ i n λ i ∣ i ⟩ ⟨ i ∣ = ( λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ λ n ) A=\sum_i^n\lambda_i |i\rangle \langle i|= \left(\begin{matrix} \lambda_1 & 0 & \cdots &0 \\ 0 & \lambda_2 & \cdots &0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \\ \end{matrix}\right) A=inλiii=λ1000λ2000λn

           其中 ∣ i ⟩ |i\rangle i A A A 的本征矢量。该方程也称为算符 A A A 的谱分解,可以看出 A A A 的本征值构成它的谱。

  3. 对角化
           如果一个算符具有对角表象,就称为 可对角化 的。

  4. 正规算符
           正规算符 的定义为:
    A A H = A H A AA^H=A^HA AAH=AHA

           厄米算符和幺正算符都是正规算符。

    定理

    (谱分解定理)当且仅当一个算符是正规的, 它才是可以对角化的, 且具有正交归一化的本征基矢。

           因此,厄米算符和幺正算符都是正规算符。

  5. 算符函数
           如果
    A = ∑ i n λ i ∣ i ⟩ ⟨ i ∣ = ( λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ λ n ) A=\sum_i^n\lambda_i |i\rangle \langle i|= \left(\begin{matrix} \lambda_1 & 0 & \cdots &0 \\ 0 & \lambda_2 & \cdots &0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \\ \end{matrix}\right) A=inλiii=λ1000λ2000λn
           则在复数域上, 定义正规算符(或其子类厄米算符)的函数 f f f 为:
    A = ∑ i n f ( λ i ) ∣ i ⟩ ⟨ i ∣ A=\sum_i^n f(\lambda_i) |i\rangle \langle i| A=inf(λi)ii

  6. 对易和反对易
           算符 A A A B B B 如果满足条件 A B = B A AB=BA AB=BA ,则称为 对易 的;如果 [ A , B ] = − [ B , A ] [A,B]=-[B,A] [A,B]=[B,A] ,则称为 反对易 的。

  7. 对易子和反对易子
           量子算符的 对易子 定义为: [ A , B ] = A B − B A [A,B]=AB-BA [A,B]=ABBA对易关系 [ A , B ] = 0 [A, B]=0 [A,B]=0反对易子 的定义为 { A , B } = A B + B A \{A, B\}=AB + BA {A,B}=AB+BA反对易关系 { A , B } = 0 \{A, B\}=0 {A,B}=0
    对易子的性质:
    1. [ A , B ] = − [ B , A ] [A, B]=-[B,A] [A,B]=[B,A]
    2. [ A B , C ] = A [ B , A ] + [ A , C ] B [AB, C]=A[B,A]+[A,C]B [AB,C]=A[B,A]+[A,C]B
    3. 如果 A 和 B 都是厄米算符, 则 [ A , B ] [A, B] [A,B] 也是厄米算符。

  8. 同时对角化定理
           正规算符 A 和 B 是对易的, 当且仅当存在一组正交归一基矢, 使得 A A A B B B 在其上是对角的。在这种情况下, A A A B B B 被称为可同时对角化。

  9. 矩阵的迹
           矩阵的迹被定义为其对角元之和, 即
    t r ( A ) = ∑ i = 1 n A i i tr(A)=\sum_{i=1}^nA_{ii} tr(A)=i=1nAii

           由于矩阵元可以表示为 A i j = ⟨ v i ∣ A ∣ v j ⟩ A_{ij}=\langle v_i| A |v_j\rangle Aij=viAvj ,所以对角元素之和还可以表示为
    t r ( A ) = ∑ i ⟨ v i ∣ A ∣ v i ⟩ = ∑ i ⟨ i ∣ A ∣ i ⟩ tr(A)=\sum_{i}\langle v_i| A |v_i\rangle=\sum_{i}\langle i| A |i\rangle tr(A)=iviAvi=iiAi

    矩阵迹的性质:
    1. t r ( A + B ) = t r ( A ) + t r ( B ) tr(A+B)=tr(A)+tr(B) tr(A+B)=tr(A)+tr(B)
    2. t r ( c A ) = c   t r ( A ) tr(cA)=c \ tr(A) tr(cA)=c tr(A)
    3. t r ( A B ) = t r ( B A ) tr(AB)=tr(BA) tr(AB)=tr(BA)
    4. 由上面可知, t r ( U H A U ) = t r ( U U H A ) = t r ( A ) tr(U^HAU)=tr(UU^HA)=tr(A) tr(UHAU)=tr(UUHA)=tr(A),即矩阵的迹在幺正变换下不变,算符 A A A 的迹是其本征值之和:
    U H A U = ( λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ λ n ) U^H AU=\left(\begin{matrix} \lambda_1 & 0 & \cdots &0 \\ 0 & \lambda_2 & \cdots &0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \\ \end{matrix}\right) UHAU=λ1000λ2000λn
    5. t r ( ∣ α ⟩ ⟨ β ∣ ) = ⟨ β ∣ α ⟩ tr(|\alpha\rangle\langle\beta|)=\langle\beta|\alpha\rangle tr(αβ)=βα
    6. 算符 A 的迹, 由其矩阵表示的迹来定义, 迹与表象的选择无关。

10.张量积
       对于每一对矢量 ∣ φ 1 ⟩ ∈ H 1 , ∣ φ 2 ⟩ ∈ H 2 |\varphi_1\rangle \in H_1,|\varphi_2\rangle \in H_2 φ1H1,φ2H2,希尔伯特空间 H H H 都有一个矢量 ∣ φ ⟩ |\varphi\rangle φ 与它们联系, ∣ φ ⟩ |\varphi\rangle φ 被称为 ∣ φ 1 ⟩ , ∣ φ 2 ⟩ |\varphi_1\rangle,|\varphi_2\rangle φ1,φ2 的张量积,记为 ∣ φ ⟩ = ∣ φ 1 ⟩ ⊗ ∣ φ 2 ⟩ |\varphi\rangle=|\varphi_1\rangle \otimes |\varphi_2\rangle φ=φ1φ2 ,也可以记为 ∣ φ 1 ⟩ ∣ φ 2 ⟩ |\varphi_1\rangle|\varphi_2\rangle φ1φ2 ∣ φ 1 φ 2 ⟩ |\varphi_1\varphi_2\rangle φ1φ2 H H H 中的矢量是 ∣ φ 1 ⟩ ⊗ ∣ φ 2 ⟩ |\varphi_1\rangle \otimes |\varphi_2\rangle φ1φ2 的线性叠加。

∣ 0 ⟩ = [ 1 0 ] , ∣ 1 ⟩ = [ 0 1 ] |0\rangle=\left[\begin{matrix} 1 \\ 0 \end{matrix}\right], |1\rangle=\left[\begin{matrix} 0 \\ 1 \end{matrix}\right] 0=[10],1=[01],则
∣ 0 ⟩ ⊗ ∣ 1 ⟩ = ∣ 01 ⟩ = [ 1 0 ] ⊗ [ 0 1 ] = [ 1 [ 0 1 ] 0 [ 0 1 ] ] = [ 0 1 0 0 ] |0\rangle \otimes |1\rangle=|01\rangle= \left[\begin{matrix} 1 \\ 0 \end{matrix}\right] \otimes \left[\begin{matrix} 0 \\ 1 \end{matrix}\right]= \left[\begin{matrix} 1 \left[\begin{matrix} 0 \\ 1 \end{matrix}\right] \\ 0 \left[\begin{matrix} 0 \\ 1 \end{matrix}\right] \end{matrix}\right]= \left[\begin{matrix} 0 \\ 1 \\ 0 \\ 0 \end{matrix}\right] 01=01=[10][01]=1[01]0[01]=0100

注意:

  1. 两个维度分别为 m m m n n n 的希尔伯特空间 H 1 , H 2 H_1,H_2 H1,H2 ,其张量积 H = H 1 ⊗ H 2 H=H_1 \otimes H_2 H=H1H2 的维度是 m n mn mn

  2. ∣ i ⟩ , ∣ j ⟩ |i\rangle,|j\rangle i,j 分别是 H 1 , H 2 H_1,H_2 H1,H2 的正交归一基,则 ∣ i ⟩ ⊗ ∣ j ⟩ |i\rangle \otimes |j\rangle ij 就是 H = H 1 ⊗ H 2 H=H_1 \otimes H_2 H=H1H2 的正交归一基。

  3. A , B A,B A,B 分别作用于 H 1 , H 2 H_1,H_2 H1,H2 ,则算符 A ⊗ B A \otimes B AB 对于空间 H = H 1 ⊗ H 2 H=H_1 \otimes H_2 H=H1H2 中的一个一般矢量
    ∣ φ ⟩ = ∑ i j c i j ∣ i ⟩ ⊗ ∣ j ⟩ |\varphi\rangle=\sum_{ij}c_{ij}|i\rangle\otimes|j\rangle φ=ijcijij

    的作用定义为:
    ( A ⊗ B ) ( ∑ i j c i j ∣ i ⟩ ⊗ ∣ j ⟩ ) = ∑ i j c i j ( A ∣ i ⟩ ⊗ B ∣ j ⟩ ) (A\otimes B)(\sum_{ij}c_{ij}|i\rangle\otimes|j\rangle)= \sum_{ij}c_{ij}(A|i\rangle\otimes B|j\rangle) (AB)(ijcijij)=ijcij(AiBj)

    其物理意义为算符只对各自空间中的矢量起作用。

  4. ∣ φ ⟩ ⊗ k = ∣ φ ⟩ 1 ⊗ ∣ φ ⟩ 2 ⊗ ⋯ ⊗ ∣ φ ⟩ k |\varphi\rangle^{\otimes k}=|\varphi\rangle_1 \otimes |\varphi\rangle_2 \otimes \cdots \otimes |\varphi\rangle_k φk=φ1φ2φk

  5. A , B A,B A,B 分别是算符的矩阵表示, A A A m × m m\times m m×m 方阵, B B B n × n n\times n n×n 方阵,则
    A ⊗ B = ( A 11 B A 12 B ⋯ A 1 m B A 21 B A 22 B ⋯ A 2 m B ⋮ ⋮ ⋱ ⋮ A m 1 B A m 2 B ⋯ A m m B ) A\otimes B=\left(\begin{matrix} A_{11}B & A_{12}B & \cdots &A_{1m}B \\ A_{21}B & A_{22}B & \cdots &A_{2m}B \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1}B & A_{m2}B & \cdots & A_{mm}B \\ \end{matrix}\right) AB=A11BA21BAm1BA12BA22BAm2BA1mBA2mBAmmB

    其中, A i j A_{ij} Aij n × n n\times n n×n 的方阵。

性质:

  1. 对矢量任何 ∣ φ ⟩ ∈ H 1 , ∣ ψ ⟩ ∈ H 2 |\varphi\rangle \in H_1,|\psi\rangle \in H_2 φH1,ψH2 ,以及 c ∈ C c \in C cC ,都有
    c ( ∣ φ ⟩ ⊗ ∣ ψ ⟩ ) = ( c ∣ φ ⟩ ) ⊗ ∣ ψ ⟩ = ∣ φ ⟩ ⊗ ( c ∣ ψ ⟩ ) c(|\varphi\rangle\otimes|\psi\rangle)=(c|\varphi\rangle)\otimes|\psi\rangle=|\varphi\rangle\otimes(c|\psi\rangle) c(φψ)=(cφ)ψ=φ(cψ)

  2. 对任何矢量 ∣ φ 1 ⟩ , ∣ φ 2 ⟩ ∈ H 1 , ∣ ψ ⟩ ∈ H 2 |\varphi_1\rangle,|\varphi_2\rangle \in H_1 ,|\psi\rangle \in H_2 φ1,φ2H1,ψH2,有
    ( ∣ φ 1 ⟩ + ∣ φ 2 ⟩ ) ⊗ ∣ ψ ⟩ = ∣ φ 1 ⟩ ⊗ ∣ ψ ⟩ + ∣ φ 2 ⟩ ⊗ ∣ ψ ⟩ (|\varphi_1\rangle+|\varphi_2\rangle)\otimes |\psi\rangle=|\varphi_1\rangle\otimes |\psi\rangle+|\varphi_2\rangle\otimes |\psi\rangle (φ1+φ2)ψ=φ1ψ+φ2ψ

  3. 对矢量任何 ∣ φ ⟩ ∈ H 1 , ∣ ψ 1 ⟩ , ∣ ψ 2 ⟩ ∈ H 2 |\varphi\rangle \in H_1,|\psi_1\rangle,|\psi_2\rangle \in H_2 φH1,ψ1,ψ2H2 ,有
    ∣ φ ⟩ ⊗ ( ∣ ψ 1 ⟩ + ∣ ψ 2 ⟩ ) = ∣ φ ⟩ ⊗ ∣ ψ 1 ⟩ + ∣ φ ⟩ ⊗ ∣ ψ 2 ⟩ |\varphi\rangle \otimes(|\psi_1\rangle+|\psi_2\rangle)= |\varphi\rangle \otimes|\psi_1\rangle+|\varphi\rangle \otimes|\psi_2\rangle φ(ψ1+ψ2)=φψ1+φψ2

  4. 对任何矢量 ∣ φ 1 ⟩ , ∣ φ 2 ⟩ ∈ H 1 , ∣ ψ 1 ⟩ , ∣ ψ 2 ⟩ ∈ H 2 |\varphi_1\rangle,|\varphi_2\rangle \in H_1 ,|\psi_1\rangle,|\psi_2\rangle \in H_2 φ1,φ2H1,ψ1,ψ2H2,有
    ( ∣ φ 1 ψ 1 ⟩ , ∣ φ 2 ψ 2 ⟩ ) = ( ∣ φ 1 ⟩ , ∣ φ 2 ⟩ ) ( ∣ ψ 1 ⟩ , ∣ ψ 2 ⟩ ) = ⟨ φ 1 ψ 1 ⟩ ⟨ φ 2 ψ 2 ⟩ (|\varphi_1\psi_1\rangle,|\varphi_2\psi_2\rangle)= (|\varphi_1\rangle,|\varphi_2\rangle)(|\psi_1\rangle,|\psi_2\rangle)= \langle\varphi_1\psi_1\rangle\langle \varphi_2\psi_2\rangle (φ1ψ1,φ2ψ2)=(φ1,φ2)(ψ1,ψ2)=φ1ψ1φ2ψ2

  5. 对任何矢量 ∣ φ 1 ⟩ , ∣ φ 2 ⟩ ∈ H 1 , ∣ ψ 1 ⟩ , ∣ ψ 2 ⟩ ∈ H 2 |\varphi_1\rangle,|\varphi_2\rangle \in H_1 ,|\psi_1\rangle,|\psi_2\rangle \in H_2 φ1,φ2H1,ψ1,ψ2H2,有
    ( ∣ φ 1 ⟩ ⊗ ∣ ψ 1 ⟩ ) ( ∣ φ 2 ⟩ ⊗ ∣ ψ 2 ⟩ ) = ( ∣ φ 1 ⟩ ∣ φ 2 ⟩ ) ⊗ ( ∣ ψ 1 ⟩ ∣ ψ 2 ⟩ ) (|\varphi_1\rangle\otimes|\psi_1\rangle)(|\varphi_2\rangle\otimes|\psi_2\rangle)= (|\varphi_1\rangle|\varphi_2\rangle)\otimes(|\psi_1\rangle|\psi_2\rangle) (φ1ψ1)(φ2ψ2)=(φ1φ2)(ψ1ψ2)

  6. 对于算符的性质:
    ( A ⊗ B ) ∗ = A ∗ ⊗ B ∗ , ( A ⊗ B ) T = A T ⊗ B T , ( A ⊗ B ) H = A H ⊗ B H (A\otimes B)^*=A^*\otimes B^*,(A\otimes B)^T=A^T\otimes B^T,(A\otimes B)^H=A^H\otimes B^H (AB)=AB,(AB)T=ATBT,(AB)H=AHBH

  7. 对于正规算符、厄米算符、幺正算符和正则算符来说,算符的直积仍是同类算符。


2.3 量子系统中常用的复合系统假设

       复合系统物理系统的状态空间是其子系统的张量积。 若将组成复合系统的子系统分别编号为 1 1 1 n n n , 每个子系统i的状态用态矢量 ∣ ψ i ⟩ |\psi_i\rangle ψi 表示,则 整个系统的总状态 表示为 ∣ ψ 1 ⟩ ⊗ ∣ ψ 2 ⟩ ⊗ ⋯ ⊗ ∣ ψ n ⟩ |\psi_1\rangle\otimes |\psi_2\rangle\otimes \cdots \otimes |\psi_n\rangle ψ1ψ2ψn


2.3 量子力学的全同性公设

       描写全同粒子系统的态矢量,对于任意一对粒子的对调,是对称的(对调前 后完全相同)或反对称的(对调前后相差一个负号)。服从前者的粒子被称为 波色子,后者被称为 费米子。这一原理可以简单描述为:任意两个全同粒子交换,不会改变系统的状态。

  • 8
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值