bzoj 5028: 小Z的加油店

23 篇文章 0 订阅
2 篇文章 0 订阅

题意:

问区间中的数加加减减能组成的正整数最小数。

题解:

其实是 ax+by++cz 的最小正整数值。
根据裴蜀定理,就是他们的gcd。
所以就成了维护区间gcd。
然而因为太弱,还是一脸蒙逼。
orz tkj大佬,要我差分后再做。
根据辗转相除法,差分后的gcd=原序的gcd。
于是只用求出序列第一个数和后面差分的gcd就可以了。
线段树维护。
code:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
using namespace std;
int n,m,v[100010],a[100010];
struct node{
    int lc,rc,c,sum;
}tr[200010];int tot=0;
int gcd(int a,int b)
{
    if(a==0) return b;
    return gcd(b%a,a);
}
int bt(int l,int r)
{
    int x=++tot;
    if(l!=r)
    {
        int mid=(l+r)/2;
        tr[x].lc=bt(l,mid);
        tr[x].rc=bt(mid+1,r);
        tr[x].c=gcd(tr[tr[x].lc].c,tr[tr[x].rc].c);
        tr[x].sum=tr[tr[x].lc].sum+tr[tr[x].rc].sum;
    }
    else tr[x].c=tr[x].sum=a[l];
    return x;
}
void change(int x,int l,int r,int k,int c)
{
    if(l==r){tr[x].c+=c;tr[x].sum+=c;return;}
    int mid=(l+r)/2;
    if(k<=mid) change(tr[x].lc,l,mid,k,c);
    else change(tr[x].rc,mid+1,r,k,c);
    tr[x].c=gcd(tr[tr[x].lc].c,tr[tr[x].rc].c);
    tr[x].sum=tr[tr[x].lc].sum+tr[tr[x].rc].sum;
}
int findans(int x,int l,int r,int fl,int fr)
{
    if(fl==l&&fr==r) return tr[x].c;
    int mid=(l+r)/2;
    if(fr<=mid) return findans(tr[x].lc,l,mid,fl,fr);
    if(fl>mid) return findans(tr[x].rc,mid+1,r,fl,fr);
    return gcd(findans(tr[x].lc,l,mid,fl,mid),findans(tr[x].rc,mid+1,r,mid+1,fr));
}
int findsum(int x,int l,int r,int fl,int fr)
{
    if(fl==l&&fr==r) return tr[x].sum;
    int mid=(l+r)/2;
    if(fr<=mid) return findsum(tr[x].lc,l,mid,fl,fr);
    if(fl>mid) return findsum(tr[x].rc,mid+1,r,fl,fr);
    return findsum(tr[x].lc,l,mid,fl,mid)+findsum(tr[x].rc,mid+1,r,mid+1,fr);
}
int main()
{
    scanf("%d %d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%d",&v[i]);
    for(int i=1;i<=n;i++)
        a[i]=v[i]-v[i-1];
    bt(1,n);
    while(m--)
    {
        int tmp;scanf("%d",&tmp);
        if(tmp==1)
        {
            int l,r;scanf("%d %d",&l,&r);
            if(l==r) printf("%d\n",findsum(1,1,n,1,l));
            else printf("%d\n",abs(gcd(findans(1,1,n,l+1,r),findsum(1,1,n,1,l))));
        }
        else
        {
            int l,r,c;scanf("%d %d %d",&l,&r,&c);
            change(1,1,n,l,c);
            if(r!=n) change(1,1,n,r+1,-c);
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值