剩余系,欧拉定理,扩展欧拉定理

剩余类(同余类)

给定一个正整数n,以C_{r} r ∈[0, n -1]表示所有形如C_{r}=xn+r的整数组成的集合称为模n的剩余类。例n = 5,r = 3,则C3= 5x +3为模5的一个剩余类。

完全剩余系(完系)

给定一个正整数n,在模n的剩余类中各取一个元素,则这n个数就构成了模n的一个完全剩余系,总共n个数,将这些数构成一个新的集合,则称这个集合为模n的完全剩余系。

一个数除以4的余数只能是0,1,2,3,{0,1,2,3}和{4,5,-2,11}是模4的完全剩余系。可以看出0和4,1和5,2和-2,3和11模4同余,这4组数分别属于4个剩余类。

简化剩余系(缩系)

给定一个正整数n,有\varphi(n)个不同的模n的余数r与n互质的剩余类,从这\varphi(n)个剩余类中各取出一个元素,总共\varphi(n)个数,将这些数构成一个新的集合,则称这个集合为模n的简化剩余系。

例如,模5的一个简化剩余系是1,2,3,4,模10的一个简化剩余系是1,3,7,9,模18的一个简化剩余系是1,5,7,11,13,17

欧拉函数

在数论,对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目。

\varphi(n) = n \times\prod_{i=1}^{s}\frac{p_{i}-1}{p_{i}} 

欧拉函数的证明计算可以看我另一篇博客→传送门 

好了前置的概念知识介绍完毕,现在引入欧拉定理

欧拉定理 

设a,m∈N^{+},且gcd(a,m)=1,则有:

a^{\varphi(m)}\equiv 1(modm)

 欧拉定理的证明

设取模m的一个缩系{r_{1},r_{2},r_{3},...,r_{\varphi(m)}},则{ar_{1},ar_{2},ar_{3},...,ar_{\varphi(m)}}也是取模m的一个缩系。

所以:\prod_{i=1}^{\varphi(m)}r_{i}\equiv \prod_{i=1}^{\varphi(m)}ar_{i}\equiv a^{\varphi(m)}\prod_{i=1}^{\varphi(m)}r_{i}(modm)

根据同余式,约去\prod_{i=1}^{\varphi(m)}r_{i},则可得:

a^{\varphi(m)}\equiv 1(modm)

证毕。

另若m为质数,则有a^{m-1}\equiv 1(modm) ,这正是费马小定理,由此可知费马小定理是欧拉定理的一个特例。

扩展欧拉定理

b<\varphi(m)a^{b} \equiv a^{b}(modm)

b\geqslant \varphi(m)a^{b} \equiv a^{b\mod\varphi(m)+\varphi(m)}(modm)

关于证明可见欧拉定理 & 费马小定理 - OI Wiki (oi-wiki.org)“欧拉函数详解”附:证明_Cr.rech的博客-CSDN博客

知识学完了,那就上例题→P5091 【模板】扩展欧拉定理 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

 根据扩展欧拉定理,根据b的大小我们对其进行降幂操作,欧拉函数可以用筛法或试除法来求,最后跑快速幂即可。

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
char s[20000005];
int MOD;

int qpow(LL a, int b, int m = MOD, int res = 1){
  a %= m;
  while (b > 0) res = (b & 1) ? (res * a % m) : (res), a = a * a % m, b >>= 1;
  return res;
}

int get_phi(int x){
  int ans = x;
  for(int i = 2; i <= x / i; i++){
    if(x % i == 0) {
      ans = ans / i * (i - 1);
      while(x % i == 0) x /= i;
    }
  }
  if(x > 1) ans = ans / x * (x - 1); 
  return ans;
}

int depow(int phi){
  int ans = 0;
  bool flag = 0;
  for(int i = 0; s[i]; i++) {
    ans = ans * 10 + (s[i] - '0');
    if(ans >= phi) flag = 1, ans %= phi; 
  }
  if(flag) ans += phi;
  return ans;
}

int main(){
  int a, m, b;
  scanf("%d%d%s", &a, &MOD, s);
  
  int phi = get_phi(MOD);
  
  b = depow(phi);

  printf("%d", qpow(a, b, MOD));
  return 0;
}

 

 

 

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值