bzoj 3925: [Zjoi2015]地震后的幻想乡

27 篇文章 0 订阅
6 篇文章 0 订阅

题意:

傲娇少女幽香是一个很萌很萌的妹子,而且她非常非常地有爱心,很喜欢为幻想乡的人们做一些自己力所能及的事情来帮助他们。 这不,幻想乡突然发生了地震,所有的道路都崩塌了。现在的首要任务是尽快让幻想乡的交通体系重新建立起来。幻想乡一共有n个地方,那么最快的方法当然是修复n-1条道路将这n个地方都连接起来。 幻想乡这n个地方本来是连通的,一共有m条边。现在这m条边由于地震的关系,全部都毁坏掉了。每条边都有一个修复它需要花费的时间,第i条边所需要的时间为ei。地震发生以后,由于幽香是一位人生经验丰富,见得多了的长者,她根据以前的经验,知道每次地震以后,每个ei会是一个0到1之间均匀分布的随机实数。并且所有ei都是完全独立的。 现在幽香要出发去帮忙修复道路了,她可以使用一个神奇的大魔法,能够选择需要的那n-1条边,同时开始修复,那么修复完成的时间就是这n-1条边的ei的最大值。当然幽香会先使用一个更加神奇的大魔法来观察出每条边ei的值,然后再选择完成时间最小的方案。 幽香在走之前,她想知道修复完成的时间的期望是多少呢?

题解:

期望好题+子集dp
题目给的东西怎么会没用呢?
先列出柿子:

ans=v(x)p(x)=xp(x)m+1 a n s = ∑ v ( x ) p ( x ) = ∑ x ∗ p ( x ) m + 1

其中 v(x) v ( x ) 是mst最大边排名为x时,x的期望值(用题面的公式)
p(x) p ( x ) 是最大边排名为x的概率。
于是要求 p(x) p ( x )
直接不好求,考虑容斥,求出 f(x) f ( x ) ,用最大边排名大于等于x的使图连通的概率,这等价与用排名严格小于x的边使图不能联通的概率。
所以 p(x)=f(x1)f(x) p ( x ) = f ( x − 1 ) − f ( x )
于是柿子变为:
ans=1m+1(f(0)f(1))+2m+1(f(1)f(2))+3m+1(f(2)f(3)) a n s = ∑ 1 m + 1 ( f ( 0 ) − f ( 1 ) ) + ∑ 2 m + 1 ( f ( 1 ) − f ( 2 ) ) + ∑ 3 m + 1 ( f ( 2 ) − f ( 3 ) )

=nxf(x)m+1 = ∑ x n f ( x ) m + 1

而求 f(x) f ( x ) 等价于求用x条边使图不能连通的方案数。
这个就容斥一下+子集dp就好了,大致同: bzoj 2560
方程大概是: f[S][i+j]=g[k][i]Cje[S xor k] f [ S ] [ i + j ] = ∑ g [ k ] [ i ] ∗ C e [ S   x o r   k ] j
code:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std;
struct node{
    int x,y;
}e[100];
int n,m,C[1<<10];
double f[1<<10][1050],g[1<<10][1050],c[100][100];
void pre(int S)
{
    for(int i=1;i<=m;i++)
    {
        int x=e[i].x,y=e[i].y;
        if((S&(1<<(x-1)))&&(S&(1<<(y-1)))) C[S]++;
    }
}
int main()
{
    scanf("%d %d",&n,&m);
    for(int i=1;i<=m;i++) scanf("%d %d",&e[i].x,&e[i].y);
    for(int i=1;i<(1<<n);i++) pre(i);
    for(int i=0;i<=m;i++)
    {
        c[i][0]=1;
        for(int j=1;j<=i;j++) c[i][j]=(c[i-1][j]+c[i-1][j-1]);
    }
    for(int S=0;S<(1<<n);S++)
    {
        if(S!=0&&S-(S&-S)==0) g[S][0]=1;
        else
        {
            int p=S&-S;
            for(int k=(S-1)&S;k;k=(k-1)&S)
            {
                if(k&p)
                    for(int i=0;i<=C[k];i++)
                        for(int j=0;j<=C[S^k];j++)
                            f[S][i+j]+=g[k][i]*c[C[S^k]][j];
            }
            for(int i=0;i<=C[S];i++) g[S][i]=c[C[S]][i]-f[S][i];
        }
    }
    double ans=0;
    for(int i=0;i<=m;i++)
        ans+=f[(1<<n)-1][i]/c[C[(1<<n)-1]][i];
    printf("%.6f\n",ans/(m+1));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值