题意:
有一棵n个点的无根树,每条边有一个正整数权值,表示长度,定义两点距离为在树上的最短路径的长度。
已知2到n-1每个点在树上与1和n的距离,请根据这些信息还原出这棵树。
题解:
构造题。
显然一定有一种合法的方案是1,n间有一条链,然后其它点直接连在这条链上面。
假如我们已经知道了1,n间的距离,那么其它点到这条链的距离就是
(d(i,1)+d(i,n)−len)/2
(
d
(
i
,
1
)
+
d
(
i
,
n
)
−
l
e
n
)
/
2
也可以知道他连在链的哪个位置上。
那么现在就是求1,n间的距离。
1:1,n间有别的点
那么就是
min(d(1,i)+d(i,n))
m
i
n
(
d
(
1
,
i
)
+
d
(
i
,
n
)
)
2:1,n直接相连
这是满足所有
|d(1,i)−d(i,n)|
|
d
(
1
,
i
)
−
d
(
i
,
n
)
|
相等。
code:
#include<map>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;
struct Node{
int d1,dn;
}a[500010];
int n,d[2000000];
void end() {printf("NIE");exit(0);}
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void check()
{
int tmp=-1;
for(int i=2;i<n;i++)
if(tmp==-1||tmp==abs(a[i].d1-a[i].dn)) tmp=abs(a[i].d1-a[i].dn);
else return;
if(tmp==0) return;
printf("TAK\n1 %d %d\n",n,tmp);
for(int i=2;i<n;i++)
{
if(a[i].d1<a[i].dn) printf("1 %d %d\n",i,a[i].d1);
else printf("%d %d %d\n",i,n,a[i].dn);
}
exit(0);
}
int main()
{
n=read();
if(n==2) return puts("TAK\n1 2 1"),0;
for(int i=2;i<n;i++) a[i].d1=read();
for(int i=2;i<n;i++) a[i].dn=read();
check();
int len=1<<28;
for(int i=2;i<n;i++) len=min(len,a[i].d1+a[i].dn);
d[0]=1;d[len]=n;
for(int i=2;i<n;i++)
{
int c=(a[i].d1+a[i].dn-len)/2;
if(c*2!=a[i].d1+a[i].dn-len) end();
if(c!=0) continue;
if(d[a[i].d1]) end();
d[a[i].d1]=i;
}
for(int i=2;i<n;i++)
{
int c=(a[i].d1+a[i].dn-len)/2;
if(c*2!=a[i].d1+a[i].dn-len) end();
if(c==0) continue;
if(a[i].d1-c<0||a[i].d1-c>len||!d[a[i].d1-c]) end();
if(a[i].d1-c==len&&c!=a[i].dn) end();
}
printf("TAK\n");
for(int i=2;i<n;i++)
{
LL c=(a[i].d1+a[i].dn-len)/2;
if(c*2!=a[i].d1+a[i].dn-len) end();
if(c==0) continue;
printf("%d %d %d\n",i,d[a[i].d1-c],c);
}
int last=0;
for(int i=1;i<=len;i++)
if(d[i]) printf("%d %d %d\n",d[i],d[last],i-last),last=i;
}