题意:
小叶子的桌面上有 n 本高度不相同的书,n+e 现在需要把这些书按照一定的顺序摆放好。假设第 i 本书的高度为 h[i],n+e 的摆放用一个 1~n的排列 pi 来表示。定义一个摆放的混乱程度:|h[p2]-h[p1]|+|h[p3]-h[p2]|+……+|h[pn]-h[pn-1]|,即相邻两本书的高度差的绝对值之和。已知合法的摆放要求其混乱程度不超过 L。小叶子想要知道,n+e 到底有多少种合法的摆放的方法呢?作为将要参加 NOI 的选手,你应该知道,小叶子只关心这个数对10^9+7 取模的结果。
题解:
按照bzoj4498的思路,不难得到一种
O
(
n
2
n
h
i
)
O(n^2nh_i)
O(n2nhi)的做法,因为最后一位是可以去负的,所以没有体现L的限制,无法通过。
题解
这里将最后一维变成当前各段的贡献至少为多少,当加入一个新数时,要加上之前没算的贡献,那么这个值就恒为正,可以dp。
code:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;
const LL mod=1e9+7;
LL n,L,a[110],f[2][3][110][1010],now=0;
void add(LL &a,LL b) {a+=b;a-=(a>=mod)?mod:0;}
int main()
{
scanf("%lld %lld",&n,&L);
for(LL i=1;i<=n;i++) scanf("%lld",&a[i]);
sort(a+1,a+n+1);
if(n==1) return puts("1"),0;
if(a[n]-a[1]>L) return puts("0"),0;
f[0][2][1][0]=1;f[0][1][1][0]=2;
for(LL i=2;i<=n;i++)
{
now^=1;memset(f[now],0,sizeof(f[now]));
for(LL l=0;l<=2;l++)
for(LL j=1;j<=i;j++)
for(LL k=0;k<=L;k++) if(f[now^1][l][j][k])
{
LL p=k+(a[i]-a[i-1])*(2*j+l-2);
if(p>L) break;
LL t=f[now^1][l][j][k];
if(l) add(f[now][l-1][j+1][p],t*l%mod),add(f[now][l-1][j][p],t*l%mod);
add(f[now][l][j+1][p],t*(j-1+l)%mod);
add(f[now][l][j][p],t*(j*2-2+l)%mod);
add(f[now][l][j-1][p],t*(j-1)%mod);
}
}
LL ans=0;
for(LL i=0;i<=L;i++) add(ans,f[now][0][1][i]);
printf("%lld",ans);
}