[UOJ]#36. 【清华集训2014】玛里苟斯 线性基+分类讨论

6 篇文章 0 订阅
5 篇文章 0 订阅

题意:

魔法之龙玛里苟斯最近在为加基森拍卖师的削弱而感到伤心,于是他想了一道数学题。
S S S 是一个可重集合, S = a 1 , a 2 , … , a n S={a1,a2,…,an} S=a1,a2,,an
等概率随机取 S 的一个子集 A = a i 1 , … , a i m A={ai1,…,aim} A=ai1,,aim
计算出 A A A 中所有元素异或 x x x, 求 x k x^k xk 的期望。

题解:

tyb
code:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#define LL unsigned long long
using namespace std;
bool c[65];
LL n,k,a[100010],cnt=0;
LL b[65],t,a1=0,a2=0;
void dfs(LL x,LL v)
{
	if(x>22)
	{
		if(k==3) a2+=v*v*v;
		if(k==4)
		{
			a1+=(v*v/t)*v*v;
			a1+=(v*v%t*v*v/t);
			a2+=v*v%t*v%t*v%t;
		}
		if(k==5)
		{
			a1+=(v*v*v/t)*v*v;
			a1+=(v*v*v%t*v*v/t);
			a2+=v*v%t*v%t*v%t*v%t;
		}
		a1+=a2/t;a2%=t;
		return;
	}
	dfs(x+1,v);
	if(b[x]) dfs(x+1,v^b[x]);
}
LL ans=0;
int main()
{
	scanf("%llu %llu",&n,&k);
	memset(c,false,sizeof(c));
	for(LL i=1;i<=n;i++) scanf("%llu",&a[i]);
	for(LL i=1;i<=n;i++)
		for(LL j=0;j<=63;j++) if(((LL)1<<j)&a[i]) c[j]=true;
	if(k==1)
	{
		for(LL i=0;i<=63;i++) if(c[i]) ans+=(LL)1<<i;
		printf("%llu",ans/2);
		if(ans&1) printf(".5");
	}
	else if(k==2)
	{
		for(LL i=0;i<=63;i++)
			if(c[i])
			{
				for(LL j=i+1;j<=63;j++)
				if(c[j])
				{
					bool flag=true;
					for(LL l=1;l<=n;l++)
						if(((a[l]>>i)&1)!=((a[l]>>j)&1)) {flag=false;break;}
					if(flag) ans+=(1LL<<(i+j+1));
					else ans+=(1LL<<(i+j));
				}
			}
		for(LL i=0;i<=63;i++) if(c[i]) ans+=(1LL<<(i*2));
		printf("%llu",ans/2);
		if(ans&1) printf(".5");
	}
	else
	{
		for(LL i=1;i<=n;i++)
		{
			LL x=a[i];
			for(LL j=63;j>=0;j--)
			{
				if((1LL<<j)&x)
				{
					if(!b[j]) {b[j]=x;cnt++;break;}
					x^=b[j];
				}
				if(j==0) break;
			}
		}
		t=1LL<<cnt;dfs(0,0);
		printf("%llu",a1);
		if(a2) printf(".5");
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值