poj 2115 拓展欧几里德

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_36819130/article/details/72571514

这个题很头疼啊,昨晚做的时候没有写出来,板子忘了,也不会推,数学是真的菜。

这个题进行分析

容易得到A + nC = B(mod 2^k)

也就是 nC = B - A(mod2^k)

就是求解模线性方程。

我们将模线性方程变形
x*C + y*2^k = B - A(mod2^k)
也就是求这个不定方程的x 最小正整数解
考虑对a*x + b*y = gcd(a,b);
如果我们用辗转相除求gcd(a,b)是这样的:

void Exgcd(ll a,ll b,ll& d,ll& x,ll& y){
    if(!b){
        d = a;x = 1;y = 0;
    }else{
        Exgcd(b,a%b,d,y,x);
        y -= x*(a/b);
    }
}
当循环到b = 0时,gcd就等于a,并且有1*a + 0*b = a。所以此时x = 1,y = 0

接着每一层和上一层的x和y都要交换,且y -= x*(a/b)。

如此我们求出了一a*x + b*y = gcd(a,b)的特解。但是本题求得是最小正整数解

我们知道假设一个特解是x0,y0。则通解是x0+k*b/gcd(a,b),y0-k*a/gcd(a,b)。(假设x0*a + y0*b = x1*a + y1*b,(x0-x1)a = (y1-y0)*b,两边同除gcd(a,b),(x0-x1)a /d= (y1-y0)*b/d。由于a/d与b/d互质,所以x0-x1一定是b/d整数倍,由此得x1 = x0+k*b/gcd(a,b))

由通解可知,每一个解的间距为b/gcd(a,b),则最小整数解一定在(0,b/gcd(a,b))内,则我们让x = (x0%b/gcd(a,b)+b/gcd(a,b))%b/gcd(a,b),就可以让它落到(0,b/gcd(a,b))内。

明白了上面的式子,这个题大概就懂了 下面附上代码,注意大小 2 的32次方,所以用long long 还有对于 1 << k 是不对的应该为 1LL << k 注意这些就差不多了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <algorithm>
using namespace std;
typedef long long LL;
LL a,b,c,k;
int flag;
LL gcd(LL a1,LL b1)
{
    if(b1 == 0)
        return a1;
    else
        return gcd(b1,a1 % b1);
}
void exgcd(LL a,LL b,LL &d,LL &x,LL &y)
{
    if(!b)
    {
        d = a;
        x = 1;
        y = 0;
    }
    else
    {
        exgcd(b,a%b,d,y,x);
        y -= x * (a / b);
    }
}
int main()
{
    freopen("in.txt","r",stdin);
    while(cin>>a>>b>>c>>k,a+b+c+k)
    {

        LL tmp = 1LL << k;
        LL t = (b + tmp - a) % tmp;
        LL g = gcd(c,tmp);

        if(t % g)
        {
            cout<<"FOREVER"<<endl;
            continue;
        }

        LL x, y,d;
        exgcd(c,-tmp,d,x,y);

        x = x * (t / d);
        LL t1 = tmp / d;
        if(t1 < 0)
            t1 = - t1;
        x = (x % t1 + t1) % t1;

    }
    return 0;
}




展开阅读全文

没有更多推荐了,返回首页