吴恩达编程作业——Logistic Regression with a Neural Network mindset

具有神经网络四维的逻辑回归算法

算法介绍

心得体会

  1. 数据标准化可以提升训练速度
  2. 三通道图像使用reshape()方法变为一维列向量,模拟神经元
  3. numpy的广播功能可以减少代码量
  4. numpy的向量化编程可以减少for循环的使用,提升代码执行速度
  5. 编程过程中要时刻注意向量或者矩阵运算时的维度匹配问题(可以使用assert()函数验证维度是否正确)
  6. 算法细节要算好,保持清醒,深刻理解算法细节
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值