机器学习基础题——什么是Bias?什么是Variance?如何解决过拟合和欠拟合问题?

机器学习基础
  • 1.什么是Bias?什么是Variance?
  • 2.如何解决过拟合和欠拟合问题?

Bias:反映的是模型在样本上的输出与真实值之间的误差,即模型的精准度(单个模型的学习能力)
Variance:反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性(同一个算法在不同的数据集上的不稳定性)

在这里插入图片描述
机器学习中的调优方向:High Bias + Low Variance,即上图左上角

解决欠拟合的方法
  • 模型复杂化
  • 增加更多的特征,使输入数据具有更强的表达能力
  • 调整参数和超参数
  • 降低正则化约束
解决过拟合的方法
  • early stopping: 在发生过拟合之前提前结束训练。理论上可以,但是不好把握
  • 数据集扩增:就是让模型见到更多的情况,可以最大化地满足全样本,但是实际应用中对未来事件的预测显得鞭长莫及
  • 正则化:通过引入范数的概率,增强模型的泛化能力,比如L1正则,L2正则
  • Dropout:网络模型中的一种方法,每次训练时舍去一些节点来增强泛化能力
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值