2022icpc南京站A.停停,昨日请不要再重现

文章描述了一个编程问题,给定一个n×m的网格,其中有一个洞和一些袋鼠,袋鼠根据指定的操作移动。目标是找出可能的洞的位置,使得在执行一系列操作后,网格内恰好剩下k只袋鼠。解决方案包括确定剩余袋鼠的边界,使用二维差分统计经过每个格子的袋鼠数量,并通过前缀和计算满足条件的洞的数量。
摘要由CSDN通过智能技术生成

链接:

测试链接
中文题面在这里面找

题目大意:

给定一张n行m列的网格,在位于ih行jh列的格子上有且仅有一个洞,其他每个格子上都是空地且都有一只袋鼠。全部袋鼠被U,D,L,R控制,所有袋鼠会同时根据按下的按键移动,对于一只位于第i行j列的格子上的袋鼠(用(i, j)表示):

  1. U:它会移动到(i - 1, j);
  2. D:它会移动到(i + 1, j);
  3. L:它会移动到(i, j - 1);
  4. R:它会移动到(i, j + 1)。

如果一只袋鼠踩到了洞或者移动到了网格外面,它将被从网格移除。
给出网格n*m,一个整数k,以及一系列操作(由’U’,‘D’,‘L’,'R’组成);问网格中可能存在洞的位置有多少个,使得一系列操作后,网格内恰有k只袋鼠存留。
数据范围:第一行三个整数n,m,k:1 ≤ n,m ≤ 103,0 ≤ k < n * m;
第二行一个字符串表示一系列操作,且长度≤106

分析思路:

题非常简单,首先考虑到,如果洞不存在,那么一系列操作进行后,如果袋鼠还有剩余一定是一个矩阵;为了确定剩余袋鼠的矩阵,我们对上下左右四个(UDLR)边界分别设置一个临时变量,每次操作后,对左上边界与临时变量取max值,对右下取min值即可确定剩余矩阵的边界,在这个过程中,以L操作为例,L操作后袋鼠整体向左移,相对而言就是边界向右移,此时应该是左右边界的临时值分别++;确定完剩余的袋鼠之后,我们需要判断一下上下以及左右边界是否合法(如果上边界<下边界,或左边界>有边界,则说明没有剩余袋鼠),此时结合k值进行讨论,如果k=0,场上任意位置均可以有洞,输出n * m,如果k≠0,则说明哪个位置存在洞都不能满足剩余k只袋鼠的条件,因为他们都出网格了,输出0。
上面特殊情况考虑完之后,我们轻松的得到,没有出网格的袋鼠数量为x = (D - U + 1) * (R - L + 1),因为最终要剩余k只袋鼠,那么将有(x - k)只袋鼠应当掉入洞中,则我们需要统计每个格子有多少只不同的袋鼠经过过,最终记录值(x - k)的格子数量;对于这个操作我们很容易就想到二维差分,我们通过模拟剩余的袋鼠的矩阵,每次将这个矩阵范围的格子++(记得初始矩阵也要统计),由于矩阵的大小已经是唯一确定的了,我们只需要开一个二维布尔数组统计左上(或右下)是否已经计过数,就可以很轻松的判重了,最后再用二维前缀和统计出答案输出即可。
这个题应该很容易A掉吧…

代码如下:

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

#define endl '\n'

const int N = 1010;

string op;

int n, m, k;
int U, D, L, R, U_, D_, L_, R_;
bool st[N][N];
int g[N][N];

void add(int x1, int y1, int x2, int y2){
    if (st[x1][y1])
        return;
    st[x1][y1] = true;
    g[x1][y1]++, g[x2 + 1][y1]--, g[x1][y2 + 1]--, g[x2 + 1][y2 + 1]++;
}

void solve(){
    cin >> n >> m >> k >> op;
    U_ = L_ = U = L = 1, R_ = R = m, D_ = D = n;
    memset(st, false, sizeof st), memset(g, 0, sizeof g);
    //确定边界
    for (auto i: op){
        if (i == 'L')
            L_++, R_++;
        else if (i == 'R')
            L_--, R_--;
        else if (i == 'U')
            U_++, D_++;
        else
            U_--, D_--;
        L = max(L, L_), R = min(R, R_), U = max(U, U_), D = min(D, D_);
    }
    //无袋鼠剩余情况
    if (U > D || L > R){
        if (k)
            puts("0");
        else
            cout << n * m << endl;
        return;
    }
    //统计袋鼠经过格子的情况
    int x = (D - U + 1) * (R - L + 1), cnt = 0;
    add(U, L, D, R);
    for (auto i: op){
        if (i == 'L')
            L--, R--;
        else if (i == 'R')
            L++, R++;
        else if (i == 'U')
            U--, D--;
        else
            U++, D++;
        add(U, L, D, R);
    }
    //二位前缀和+统计答案
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
            g[i][j] += g[i - 1][j] + g[i][j - 1] - g[i - 1][j - 1];

    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
            if (x - g[i][j] == k)
                 cnt++;
    cout << cnt << endl;
}

int main(){
    int _;
    cin >> _;
    while (_ -- )
        solve();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值