链接:
题目大意:
给定一张n行m列的网格,在位于ih行jh列的格子上有且仅有一个洞,其他每个格子上都是空地且都有一只袋鼠。全部袋鼠被U,D,L,R控制,所有袋鼠会同时根据按下的按键移动,对于一只位于第i行j列的格子上的袋鼠(用(i, j)表示):
- U:它会移动到(i - 1, j);
- D:它会移动到(i + 1, j);
- L:它会移动到(i, j - 1);
- R:它会移动到(i, j + 1)。
如果一只袋鼠踩到了洞或者移动到了网格外面,它将被从网格移除。
给出网格n*m,一个整数k,以及一系列操作(由’U’,‘D’,‘L’,'R’组成);问网格中可能存在洞的位置有多少个,使得一系列操作后,网格内恰有k只袋鼠存留。
数据范围:第一行三个整数n,m,k:1 ≤ n,m ≤ 103,0 ≤ k < n * m;
第二行一个字符串表示一系列操作,且长度≤106。
分析思路:
题非常简单,首先考虑到,如果洞不存在,那么一系列操作进行后,如果袋鼠还有剩余一定是一个矩阵;为了确定剩余袋鼠的矩阵,我们对上下左右四个(UDLR)边界分别设置一个临时变量,每次操作后,对左上边界与临时变量取max值,对右下取min值即可确定剩余矩阵的边界,在这个过程中,以L操作为例,L操作后袋鼠整体向左移,相对而言就是边界向右移,此时应该是左右边界的临时值分别++;确定完剩余的袋鼠之后,我们需要判断一下上下以及左右边界是否合法(如果上边界<下边界,或左边界>有边界,则说明没有剩余袋鼠),此时结合k值进行讨论,如果k=0,场上任意位置均可以有洞,输出n * m,如果k≠0,则说明哪个位置存在洞都不能满足剩余k只袋鼠的条件,因为他们都出网格了,输出0。
上面特殊情况考虑完之后,我们轻松的得到,没有出网格的袋鼠数量为x = (D - U + 1) * (R - L + 1),因为最终要剩余k只袋鼠,那么将有(x - k)只袋鼠应当掉入洞中,则我们需要统计每个格子有多少只不同的袋鼠经过过,最终记录值(x - k)的格子数量;对于这个操作我们很容易就想到二维差分,我们通过模拟剩余的袋鼠的矩阵,每次将这个矩阵范围的格子++(记得初始矩阵也要统计),由于矩阵的大小已经是唯一确定的了,我们只需要开一个二维布尔数组统计左上(或右下)是否已经计过数,就可以很轻松的判重了,最后再用二维前缀和统计出答案输出即可。
这个题应该很容易A掉吧…
代码如下:
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define endl '\n'
const int N = 1010;
string op;
int n, m, k;
int U, D, L, R, U_, D_, L_, R_;
bool st[N][N];
int g[N][N];
void add(int x1, int y1, int x2, int y2){
if (st[x1][y1])
return;
st[x1][y1] = true;
g[x1][y1]++, g[x2 + 1][y1]--, g[x1][y2 + 1]--, g[x2 + 1][y2 + 1]++;
}
void solve(){
cin >> n >> m >> k >> op;
U_ = L_ = U = L = 1, R_ = R = m, D_ = D = n;
memset(st, false, sizeof st), memset(g, 0, sizeof g);
//确定边界
for (auto i: op){
if (i == 'L')
L_++, R_++;
else if (i == 'R')
L_--, R_--;
else if (i == 'U')
U_++, D_++;
else
U_--, D_--;
L = max(L, L_), R = min(R, R_), U = max(U, U_), D = min(D, D_);
}
//无袋鼠剩余情况
if (U > D || L > R){
if (k)
puts("0");
else
cout << n * m << endl;
return;
}
//统计袋鼠经过格子的情况
int x = (D - U + 1) * (R - L + 1), cnt = 0;
add(U, L, D, R);
for (auto i: op){
if (i == 'L')
L--, R--;
else if (i == 'R')
L++, R++;
else if (i == 'U')
U--, D--;
else
U++, D++;
add(U, L, D, R);
}
//二位前缀和+统计答案
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
g[i][j] += g[i - 1][j] + g[i][j - 1] - g[i - 1][j - 1];
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
if (x - g[i][j] == k)
cnt++;
cout << cnt << endl;
}
int main(){
int _;
cin >> _;
while (_ -- )
solve();
}