推荐算法
文章平均质量分 76
推荐算法
哈喽十八子
这个作者很懒,什么都没留下…
展开
-
【DIN论文精读】Deep Interest Network for Click-Through Rate Prediction
深度兴趣网络(DIN)翻译 2022-09-16 09:02:19 · 384 阅读 · 0 评论 -
【ESMM论文精读】Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion
【ESSM论文精读】Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate翻译 2022-07-13 21:23:07 · 865 阅读 · 0 评论 -
推荐算法之--矩阵分解(Matrix Factorization)
文章目录推荐算法之--矩阵分解(Matrix Factorization)1. 共现矩阵2. 矩阵分解3. SVD实现矩阵分解4. 梯度下降4.1 前向推理 & 符号表示4.2 损失函数4.3 梯度计算4.4 代码测试5. 梯度下降 + sigmoid:5.1 前向推理 & 符号表示5.2 损失函数5.3 梯度计算5.4 代码测试6. 梯度的几何理解6.1 误差损失函数的梯度(1)关于 用户/物品矩阵(2)关于 用户/物品/整体偏置6.3 正则化损失函数的梯度7. Keras实现7.1 没有原创 2022-03-09 23:21:28 · 7976 阅读 · 2 评论 -
《深度学习推荐系统》学习笔记(5)——Embedding(论文)
Embedding在推荐系统中的应用文章目录Embedding在推荐系统中的应用Word2vec (2013, Google)Item2vec (2006, 微软)DeepWalk (2014)Node2vec (2016, 斯坦福大学)EGES (2018, 阿里巴巴)局部敏感哈希 (2008)其他参考文献Word2vec (2013, Google)原理:利用句子中词的相关性建模,利用单隐层神经网络获得词的Embedding 向量特点:经典 Embedding方法局限:仅能针对 词序列 样本原创 2022-01-05 21:01:22 · 901 阅读 · 0 评论 -
《深度学习推荐系统》学习笔记(4)——Embedding(思维导图)
参考:《深度学习推荐系统》王喆原创 2022-01-05 20:46:31 · 743 阅读 · 0 评论 -
《深度学习推荐系统》学习笔记(3)——深度学习推荐模型
参考:《深度学习推荐系统》王喆深度学习推荐模型文章目录深度学习推荐模型深度学习RS进展演化关系AutoRec (2015,澳大利亚国立大学)Deep Crossing (2016, Microsoft)DSSM 双塔模型 (2013, Microsoft)NeuralCF (2017,新加坡国立大学)PNN (2016,SJTU)Wide&Deep (2016, Google)Deep&Cross / DCN (2017,Stanford + Google)FNN (2016, 伦.原创 2021-12-29 19:27:20 · 1596 阅读 · 0 评论 -
《深度学习推荐系统》学习笔记(2)——传统推荐模型
参考:《深度学习推荐系统》王喆传统推荐模型目录文章目录传统推荐模型目录传统推荐模型优势演化关系协同过滤 CF (1992)矩阵分解 Matrix Factorization (2009)逻辑回归 LRPOLY2 2010FM (Factorization Machine)(2010)FFM (Field-aware FM)(2015)GBDT+LR (2014)LS-PLM (Large Scale Piece-wise Linear Model)(2012使用,2017公开)其他参考文献传统.原创 2021-12-28 20:29:45 · 1264 阅读 · 0 评论 -
《深度学习推荐系统》学习笔记(1)——概述(思维导图)
参考:《深度学习推荐系统》王喆原创 2021-12-28 20:16:02 · 522 阅读 · 0 评论