第十六届金马五校 B:

链接:https://www.nowcoder.com/acm/contest/91/B
来源:牛客网

题目描述

在埃森哲,员工培训是最看重的内容,最近一年,我们投入了 9.41 亿美元用于员工培训和职业发展。截至 2018 财年末,我们会在全球范围内设立 100 所互联课堂,将互动科技与创新内容有机结合起来。按岗培训,按需定制,随时随地,本土化,区域化,虚拟化的培训会让你快速取得成长。小埃希望能通过培训学习更多ACM 相关的知识,他在培训中碰到了这样一个问题,

给定一棵n个节点的树,并且根节点的编号为p,第i个节点有属性值vali, 定义F(i): 在以i为根的子树中,属性值是vali的合约数的节点个数。y 是 x 的合约数是指 y 是合数且 y 是 x 的约数。小埃想知道1000000007取模后的结果.

输入描述:

输入测试组数T,每组数据,输入n+1行整数,第一行为n和p,1<=n<=20000, 1<=p<=n, 接下来n-1行,每行两个整数u和v,表示u和v之间有一条边。第n+1行输入n个整数val1, val2,…, valn,其中1<=vali<=10000,1<=i<=n.

输出描述:

对于每组数据,输出一行,包含1个整数, 表示对1000000007取模后的结果

示例1

输入

2
5 4
5 3
2 5
4 2
1 3
10 4 3 10 5
3 3
1 3
2 1
1 10 1

输出

11
2

备注:

n>=10000的有20组测试数据

题解:

首先预处理1-N里的每个数的合约数,复杂度O(N*sqrt(N)), 然后根据DFS序记录目前为止每个数出现的次数,第一次到这个节点i时候先F[i]先减去他之前合约数出现的总次数,再次回溯的时候再次加上他合数出现的次数,两次得到的即为F[i].

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int N = 20100;

vector<int>g[N];
int val[N];
bool isprime[N];
vector<short>f[N];
int cnt[N], F[N];
ll res;
const ll MOD = 1E9 + 7;
void init()
{
    for(int i = 2;i < N;i ++) isprime[i] = 1;
    for(int i = 2;i < N;i ++) {
        if(isprime[i]) {
            for(int j = i + i;j < N;j += i) {
                isprime[j] = 0;
            }
        }
    }
    for(int i = 4;i <= 10000;i ++) {
        if(!isprime[i]) {
            for(int j = i;j <= 10000;j += i) {
                f[j].push_back(i);
            }
        }
    }
}
void dfs(int u, int par)
{
    for(int i = 0;i < f[val[u]].size();i ++) {
        int num = f[val[u]][i];
        F[u] -= cnt[num]; //根据dfs序,先减去他之前出现的
    }
    cnt[val[u]] ++;
    for(int i = 0;i < g[u].size();i ++) {
        int v = g[u][i];
        if(v == par) continue;
        dfs(v, u);
    }
    for(int i = 0;i < f[val[u]].size();i ++) {
        int num = f[val[u]][i];
        F[u] += cnt[num]; //回溯到他时,+现在出现过的总数 = 遍历完其子树后的总合约数个数-之前出现的合约数个数.
    }
    res += F[u] * 1LL * u;
    res %= MOD;
}
int main()
{
    int T;
    init();
    scanf("%d", &T);
    while(T --) {
        memset(cnt, 0, sizeof(cnt));
        res = 0;
        int n, p;
        scanf("%d %d", &n, &p);
        for(int i = 1;i <= n;i ++) F[i] = 0,g[i].clear();
        for(int i = 1;i < n;i ++) {
            int u, v;
            scanf("%d %d", &u, &v);
            g[u].push_back(v);
            g[v].push_back(u);
        }
        for(int i = 1;i <= n;i ++) {
            scanf("%d", &val[i]);
        }
        dfs(p,-1);
        printf("%lld\n", res);
    }
    return 0;
}


阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页