全国一米全要素分类数据集如何得到的?原文赏析!

这是目前网络上传的比较火的全国一米分类数据集的原文
<SinoLC-1: the first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data>
此文主要是将作者以前提出的模型用到高分辨率google影像上,获取到全国范围内的数据。
用到的模型来自<Breaking the resolution barrier: A low-to-high network for large scale high-resolution land-cover mapping using low resolution labels>,这篇提出的L2H网络据原文所说有很高的适应噪声样本的能力。
就本博客所关注的SinoLC-1这篇论文,主要从数据进行介绍,关于模型部分L2H网络后续文章会详细描述其网络结构。
对于遥感影像,主要使用google影像数据,其涉及到的影像年份主要分布如下:大多是在2021年数据,且在东部较多。
在这里插入图片描述

但是对应的标签数据是用的三个网络数据集:数据集时间是2019,2021年。标签从三种数据集来,首先对其分类体系进行的统一,然后将三种数据源做相交处理,获取的数据作为稳定的标签,其他作为背景。
值得一提的是,另外还使用了osm数据来作为道路的标签,将其叠加上上面稳定的标签对应区域中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值