这是目前网络上传的比较火的全国一米分类数据集的原文
<SinoLC-1: the first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data>
此文主要是将作者以前提出的模型用到高分辨率google影像上,获取到全国范围内的数据。
用到的模型来自<Breaking the resolution barrier: A low-to-high network for large scale high-resolution land-cover mapping using low resolution labels>,这篇提出的L2H网络据原文所说有很高的适应噪声样本的能力。
就本博客所关注的SinoLC-1这篇论文,主要从数据进行介绍,关于模型部分L2H网络后续文章会详细描述其网络结构。
对于遥感影像,主要使用google影像数据,其涉及到的影像年份主要分布如下:大多是在2021年数据,且在东部较多。
但是对应的标签数据是用的三个网络数据集:数据集时间是2019,2021年。标签从三种数据集来,首先对其分类体系进行的统一,然后将三种数据源做相交处理,获取的数据作为稳定的标签,其他作为背景。
值得一提的是,另外还使用了osm数据来作为道路的标签,将其叠加上上面稳定的标签对应区域中。