对于python语言建议不同的任务或项目中建立单独的虚拟环境,对于其他的语言最好也是不同的任务配置不同环境,而在虚拟环境中会使用的很多依赖和库,这时候别人使用的时候如果不知道需要安装哪些库会很麻烦,这时候的一个需求就是,如何导出项目代码中所实际使用到的库及其版本。
利用pipreqs库可以方便完成以上需求。操作如下:
安装:
pip install pipreqs -i https://pypi.tuna.tsinghua.edu.cn/simple
注意:如果你不需要支持 Jupyter Notebook,你可以安装一个不包含相关依赖的版本
pip install --no-deps pipreqs
pip install yarg==0.1.9 docopt==0.6.2
使用:
Usage:
pipreqs [options] [<path>]
Arguments:
<path> The path to the directory containing the application files for which a requirements file
should be generated (defaults to the current working directory)
Options:
--use-local Use ONLY local package info instead of querying PyPI
--pypi-server <url> Use custom PyPi server
--proxy <url> Use Proxy, parameter will be passed to requests library. You can also just set the
environments parameter in your terminal:
$ export HTTP_PROXY="http://10.10.1.10:3128"
$ export HTTPS_PROXY="https://10.10.1.10:1080"
--debug Print debug information
--ignore <dirs>... Ignore extra directories, each separated by a comma
--no-follow-links Do not follow symbolic links in the project
--encoding <charset> Use encoding parameter for file open
--savepath <file> Save the list of requirements in the given file
--print Output the list of requirements in the standard output
--force Overwrite existing requirements.txt
--diff <file> Compare modules in requirements.txt to project imports
--clean <file> Clean up requirements.txt by removing modules that are not imported in project
--mode <scheme> Enables dynamic versioning with <compat>, <gt> or <non-pin> schemes
<compat> | e.g. Flask~=1.1.2
<gt> | e.g. Flask>=1.1.2
<no-pin> | e.g. Flask
--scan-notebooks Look for imports in jupyter notebook files.
示例:
pipreqs /home/project/location
欢迎点赞,收藏,关注,支持小生,打造一个好的遥感领域知识分享专栏。遥感专栏
同时欢迎私信咨询讨论学习,咨询讨论的方向不限于:地物分类/语义分割(如水体,云,建筑物,耕地,冬小麦等各种地物类型的提取),变化检测,夜光遥感数据处理,目标检测,图像处理(几何矫正,辐射矫正(大气校正),图像去噪等),遥感时空融合,定量遥感(土壤盐渍化/水质参数反演/气溶胶反演/森林参数(生物量,植被覆盖度,植被生产力等)/地表温度/地表反射率等反演)以及高光谱数据处理等领域以及深度学习,机器学习等技术算法讨论,以及相关实验指导/论文指导,考研复习等多方面。