吴恩达 机器学习课程 coursera 第二次编程作业(Logistic Regression) python实现

本文详细介绍了吴恩达在Coursera上的机器学习课程中,关于Logistic Regression的第二次编程作业。作业使用Python完成,包括5个文件:ex2.py、costFunction.py、gradientDescent.py、predict.py以及数据文件ex2data1.txt。这些文件分别实现了程序入口、代价函数计算、梯度下降算法和预测功能。
摘要由CSDN通过智能技术生成

本文是吴恩达机器学习课程的第二次编程作业:Logistic Regression 的基础作业,用python实现。

 

本作业包含5个文件,分别是:

ex2.py :程序的主入口

costFunction.py :计算代价函数

gradientDescent.py :梯度向下算法

predict.py :预测算法

ex2data1.txt :训练集

 

作业文件和训练集数据下载地址:https://github.com/toanoyx/MachineLearning-AndrewNg-coursera-python/tree/master/ex2%20Logistic%20Regression

 

下文是文件的源代码:
 

ex2.py :程序的主入口

"""第1部分 可视化训练集"""
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize as opt
import seaborn as sns
from sklearn.metrics import classification_report
from scipy import optimize

from costFunction import *
from gradientDescent import *
from pr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值