
分类
文章平均质量分 90
数据分类
蚂蚁没问题s
http://www.lingliuzc.cn/
展开
-
图像处理 - 车道线检测:智能驾驶的“眼睛”
车道线检测是指通过图像处理技术,从道路图像中识别出车道线的位置,并确定车辆在车道中的位置。这项技术是实现车道保持辅助系统(LKA)、自动车道变更等智能驾驶功能的基础。图1 车道线图像车道线检测技术是智能驾驶系统中不可或缺的一部分。随着深度学习等先进技术的引入,车道线检测的准确性和鲁棒性得到了显著提升。未来,随着技术的不断进步,我们有理由相信车道线检测技术将更加成熟,为智能驾驶的安全和舒适提供更加坚实的保障。---希望这篇博客能够帮助你了解车道线检测的基本概念、技术流程以及面临的挑战。原创 2024-12-12 15:13:59 · 2344 阅读 · 0 评论 -
阈值分割- 专利1分析
例如:可以根据前景和背景的像素值分布范围的不同对背景面积进行评估,前景的像素值的分布范围一般较为集中,而背景的像素值的分布范围一般较为离散,进而可以通过对像素值进行聚类,像素值的聚类或者像素点间聚类的聚类,进而将像素值划分为两个类别,然后结合目标的特性,如上面的三个图所示,如果目标为硬币,则两个类别中像素值较大的类别作为前景类别,两一个类别作为背景类别,进而可以得到β值,然后通过该专利中方法进行分割,可以获得更好的分割效果。(d)方法的分割结果边界的细节信息较少,(e)方法的分割边界处的细节信息较丰富。原创 2024-10-11 11:51:42 · 722 阅读 · 0 评论 -
阈值分割-直方图阈值分割法
直方图阈值分割法适用于直方图为双峰的图像,通过找到直方图中的两个峰值,即前景和背景的灰度分布峰值,然后选取两个峰值之间的波谷对应的灰度值作为阈值,以此来分离前景和背景。原创 2024-10-18 16:10:27 · 1267 阅读 · 0 评论 -
阈值分割 - 选择阈值分割法
选择阈值分割法通过迭代过程选择阈值,以最小化前景和背景之间的类内方差或最大化类间方差。选择阈值分割法的实现过程基于迭代计算的原理,其核心思想是通过不断迭代来逼近最佳的阈值,以便将图像分割为前景和背景两部分。在每次迭代中,算法首先假设一个当前阈值,将图像的像素分为前景和背景两个类别。然后,算法分别计算被分类为前景和背景的像素的灰度平均值。这两个平均值的中点,即它们的平均数,被选为新的阈值。这个过程重复进行,直到阈值的变化非常小或达到预定的迭代次数,表明已经收敛到一个稳定的状态。原创 2024-10-15 09:51:52 · 1120 阅读 · 0 评论 -
图像阈值分割
OTSU作为最古老的图像分割算法,原理较为简单,将灰度图中的灰度值中选取一个灰度值作为所有灰度值的分割点,大于该分割点值的对应位置的灰度值替换为255,小于该分割点值的对应位置的灰度值替换为0,进而得到一个0-1二值图像,即图像中非黑即白,只有两种颜色。原创 2024-10-08 18:00:05 · 830 阅读 · 0 评论 -
smote过采样算法
类不平衡的数据集训练得到的分类器最大的问题就是:分类器对较大数量类别的数据的识别精度较高,对较小类别数据的识别精度较低,这是由于分类器在训练时学习了较多的较大数量类别的特征,而学习到的较小数量类别的特征较少,进而训练完成的分类器容易将较小类别的数据识别为较大类别的数据。如图所示,红色点和蓝色点属于两个不同的类别,其中红色点类别的数量为400,蓝色点类别的数量为200,蓝色点类别为少数点类别。如图所示,图中共有20个点,其中红色星号的点为目标点,即计算该点的最近邻点,绿色方格点为该点的4个最近邻点。原创 2024-10-18 09:57:55 · 1569 阅读 · 0 评论 -
分裂层次聚类算法:从原理到实战的全方位解析
分裂层次聚类(Divisive Hierarchical Clustering)是一种自顶向下的聚类方法。它从所有数据点组成的一个大簇开始,逐步将簇分裂为更小的子簇,直到每个子簇仅含单个数据点或满足预设的终止条件(如最小簇大小)。这种方法的优势在于能直观展示数据的层次结构,常用于生物学分类、社交网络分析等领域。分裂层次聚类通过自顶向下的分裂策略揭示数据内在结构,适合小规模数据或需要层次分析的场景。然而,其计算复杂度和分裂策略的敏感性需在实际应用中权衡。原创 2025-03-20 10:14:47 · 311 阅读 · 0 评论 -
Adaboost-集成学习分类器
AdaBoost(Adaptive Boosting)是一种集成学习算法,该算法的泛化逻辑为:通过一些简单的规则的整合得到一个整体,使得整体的性能比任何一个部分都高。该算法是由Yoav Freund和Robert Schapire在1995年提出。它通过组合多个弱学习器来构建一个强学习器,特别关注那些之前被错误分类的数据点,确保这些点在后续的训练中得到更多的注意,从而提高整体的学习效果。原创 2024-09-23 14:40:34 · 1064 阅读 · 0 评论 -
机器学习-树结构2-随机森林
上一篇的链接:机器学习 - 树结构1 - 随机森林-CSDN博客随机森林的改进方向1: 现有的随机森林中不同决策树中特征的选取是随机的,即先用哪个特征对样本进行分类,再用哪个特征对样本进行分类,特征的选取是随机的,因而,产生了对应的思考,对于两个类别的样本,如果先根据最难区分的两个样本(这两个样本分别属于两个类别),找到最大程度区分这两个样本的特征,将这个特征作为决策树的第一个区分特征,然后根据样本的难区分度依次选择特征作为决策树上的区分特征,是否可以增强决策树的决策能力,进而增强随机森林原创 2024-10-24 15:12:14 · 1333 阅读 · 0 评论 -
机器学习 - 树结构1 - 随机森林
鸢尾花(Iris)数据集是机器学习和统计分类中最著名的数据集之一,常被用作分类算法的测试数据。这个数据集包含150个样本,分为3个类别,每个类别有50个样本。花萼长度(Sepal Length):花萼的最大长度,单位为厘米。花萼宽度(Sepal Width):花萼的最大宽度,单位为厘米。花瓣长度(Petal Length):花瓣的最大长度,单位为厘米。花瓣宽度(Petal Width):花瓣的最大宽度,单位为厘米。这些特征都是连续的数值型数据。Iris Setosa(山鸢尾)原创 2024-10-23 17:48:18 · 1458 阅读 · 0 评论 -
层次聚类法:凝聚和分裂
凝聚层次聚类是一种自底向上的方法,它开始时将每个数据点视为一个单独的簇,然后在算法的每一步中找出距离最近的两个簇进行合并,直到达到预设的簇数量或某个终止条件。分裂层次聚类是一种自顶向下的方法,它开始时将所有数据点视为一个簇,然后在每一步中选择最合适的簇进行分裂,直到每个数据点都是一个单独的簇或达到预设的簇数量。最后,继续合并剩余的簇,直到所有数据点都被聚成一个大簇。首先,将每个数据点视为一个独立的聚类簇,即初始时有七个聚类簇:{A}, {B}, {C}, {D}, {E}, {F}, {G}。原创 2024-09-18 09:25:45 · 1245 阅读 · 0 评论 -
SLPA社区发现算法
假设有一个简单的网络,包含节点A、B、C、D、E,其中A与B、C相连,B与C、D相连,C与D、E相连,D与E相连。最终,可能会形成如A{1}, B{1,2}, C{2}, D{2}, E{2}的标签分布,表示社区结构。其中,节点B拥有两个标签{1,2}是因为在算法的迭代过程中,B节点从其邻居节点(作为Speaker)接收到了这两种标签。:每个节点(A、B、C、D、E)被赋予一个唯一的标签,例如A=1,B=2,C=3,D=4,E=5。- 节点标签的初始化:初始标签的分配可能影响最终的社区发现结果。原创 2024-09-12 11:49:52 · 555 阅读 · 0 评论