哈工大《微积分》——一元积分学与微分方程

这是一份详尽的哈工大《微积分》课程笔记,涵盖了一元积分学与微分方程的主要内容,包括原函数与不定积分、第一换元积分法、分部积分法、定积分及其应用、微积分基本定理、常微分方程等。通过实例解析和技巧讲解,帮助学习者深入理解微积分概念并掌握求解方法。
摘要由CSDN通过智能技术生成

第一讲:原函数与不定积分

  1. 原函数: F ′ ( x ) = f ( x ) , F ( x ) 为 f ( x ) 的 一 个 原 函 数 . F^{'}(x)=f(x),F(x)为f(x)的一个原函数. F(x)=f(x),F(x)f(x).
  2. 不定积分: F ( x ) + C . F(x)+C. F(x)+C.
  3. 不定积分的性质:
    3.1: ( ∫ ​ f ( x ) d x ) ′ = f ( x ) . (\int \!f(x)dx)^{'}=f(x). (f(x)dx)=f(x).
    3.2: ∫ ​ f ′ ( x ) d x = f ( x ) + C . \int \! f^{'}(x)dx=f(x)+C. f(x)dx=f(x)+C.
  4. 原函数的存在性:连续函数必有原函数;第一类间断点处无原函数【证明】。
  5. 不定积分的基本公式: ∫ ​ 1 x d x = l n ∣ x ∣ + C . \int \!{1\over x}dx=ln\left| x\right|+C. x1dx=lnx+C.

第二讲:第一换元积分法【复合函数求导法】

  1. 第一换元积分法(凑微分): ∫ ​ f ( g ( x ) ) g ′ ( x ) d x = ∫ ​ f ( g ( x ) ) d g ( x ) . \int \!f(g(x))g^{'}(x)dx=\int \!f(g(x))dg(x). f(g(x))g(x)dx=f(g(x))dg(x).
  2. 第一换元积分公式补充:
    2.1 ∫ ​ f ( a x + b ) d x = 1 b ∫ ​ f ( a x + b ) d ( a x + b ) . \int \!f(ax+b)dx={1\over b}\int \!f(ax+b)d(ax+b). f(ax+b)dx=b1f(ax+b)d(ax+b).
    2.2 ∫ ​ 1 c o s x d x = 1 2 l n ∣ 1 + s i n x 1 − s i n x ∣ + C = l n ∣ 1 c o s x + t a n x ∣ + C . \int \!{1\over cosx}dx={1\over 2}ln\left|{1+sinx} \over {1-sinx} \right|+C=ln\left|{1\over cosx}+tanx\right|+C. cosx1dx=21ln1sinx1+sinx+C=lncosx1+tanx+C.
  3. 三角函数积分:
    3.1 【m,n一奇一偶则易凑微分;全为偶数则用倍角公式降到一次】
    ∫ ​ s i n m x c o s n x d x . \int \!sin^{m}xcos^{n}xdx. sinmxcosnxdx.
    3.2 【利用 1 = s i n 2 x + c o s 2 x 1=sin^2x+cos^2x 1=sin2x+cos2x转化分子来降次,前者凑微分,后者分部积分】
    ∫ ​ 1 s i n m x c o s n x d x ⇒ ( ∫ ​ s i n x c o s k x d x , ∫ ​ c o s x s i n k x d x ) , ( ∫ ​ 1 s i n k x d x , ∫ ​ 1 c o s k x d x . ) \begin{aligned} &\int \!{1\over{sin^{m}xcos^{n}x}}dx \\ &\Rightarrow \Biggl( \int \!{sinx \over {cos^{k}x}}dx, \int \!{cosx\over {sin^{k}x}}dx\Biggr), \Biggl( \int \!{1\over {sin^{k}x}}dx, \int \!{1\over {cos^{k}x}}dx.\Biggr) \end{aligned} sinmxcosnx1dx(coskxsinxdx,sinkxcosxdx),(sinkx1dx,coskx1dx.)
    3.3 【利用 t a n 2 x = s e c 2 x − 1 和 c o t 2 x = c s c 2 − 1 来 降 次 tan^2x=sec^2x-1和cot^2x=csc^2-1来降次 tan2x=sec2x1cot2x=csc21
    【结合 d ( t a n x ) = s e c 2 x 和 d ( c o t ) = − c s c 2 x d(tanx)=sec^2x和d(cot)=-csc^2x d(tanx)=sec2xd(cot)=csc2x
    ∫ ​ t a n n x d x = ∫ ​ t a n n − 2 x ( s e c 2 x − 1 ) d x = ∫ ​ t a n n − 2 x d ( t a n x ) − ∫ ​ t a n n − 2 x d x . ∫ ​ c o t n x d x = ∫ ​ c o t n − 2 ( c s c 2 − 1 ) d x = − ∫ ​ c o t n − 2 ( 1 − c s c 2 ) d x = − ( ∫ ​ c o t n − 2 x d x + ∫ ​ c o t n −
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值