第一讲:原函数与不定积分
- 原函数: F ′ ( x ) = f ( x ) , F ( x ) 为 f ( x ) 的 一 个 原 函 数 . F^{'}(x)=f(x),F(x)为f(x)的一个原函数. F′(x)=f(x),F(x)为f(x)的一个原函数.
- 不定积分: F ( x ) + C . F(x)+C. F(x)+C.
- 不定积分的性质:
3.1: ( ∫ ​ f ( x ) d x ) ′ = f ( x ) . (\int \!f(x)dx)^{'}=f(x). (∫f(x)dx)′=f(x).
3.2: ∫ ​ f ′ ( x ) d x = f ( x ) + C . \int \! f^{'}(x)dx=f(x)+C. ∫f′(x)dx=f(x)+C. - 原函数的存在性:连续函数必有原函数;第一类间断点处无原函数【证明】。
- 不定积分的基本公式: ∫ ​ 1 x d x = l n ∣ x ∣ + C . \int \!{1\over x}dx=ln\left| x\right|+C. ∫x1dx=ln∣x∣+C.
第二讲:第一换元积分法【复合函数求导法】
- 第一换元积分法(凑微分): ∫ ​ f ( g ( x ) ) g ′ ( x ) d x = ∫ ​ f ( g ( x ) ) d g ( x ) . \int \!f(g(x))g^{'}(x)dx=\int \!f(g(x))dg(x). ∫f(g(x))g′(x)dx=∫f(g(x))dg(x).
- 第一换元积分公式补充:
2.1 ∫ ​ f ( a x + b ) d x = 1 b ∫ ​ f ( a x + b ) d ( a x + b ) . \int \!f(ax+b)dx={1\over b}\int \!f(ax+b)d(ax+b). ∫f(ax+b)dx=b1∫f(ax+b)d(ax+b).
2.2 ∫ ​ 1 c o s x d x = 1 2 l n ∣ 1 + s i n x 1 − s i n x ∣ + C = l n ∣ 1 c o s x + t a n x ∣ + C . \int \!{1\over cosx}dx={1\over 2}ln\left|{1+sinx} \over {1-sinx} \right|+C=ln\left|{1\over cosx}+tanx\right|+C. ∫cosx1dx=21ln∣∣1−sinx1+sinx∣∣+C=ln∣∣cosx1+tanx∣∣+C. - 三角函数积分:
3.1 【m,n一奇一偶则易凑微分;全为偶数则用倍角公式降到一次】
∫ ​ s i n m x c o s n x d x . \int \!sin^{m}xcos^{n}xdx. ∫sinmxcosnxdx.
3.2 【利用 1 = s i n 2 x + c o s 2 x 1=sin^2x+cos^2x 1=sin2x+cos2x转化分子来降次,前者凑微分,后者分部积分】
∫ ​ 1 s i n m x c o s n x d x ⇒ ( ∫ ​ s i n x c o s k x d x , ∫ ​ c o s x s i n k x d x ) , ( ∫ ​ 1 s i n k x d x , ∫ ​ 1 c o s k x d x . ) \begin{aligned} &\int \!{1\over{sin^{m}xcos^{n}x}}dx \\ &\Rightarrow \Biggl( \int \!{sinx \over {cos^{k}x}}dx, \int \!{cosx\over {sin^{k}x}}dx\Biggr), \Biggl( \int \!{1\over {sin^{k}x}}dx, \int \!{1\over {cos^{k}x}}dx.\Biggr) \end{aligned} ∫sinmxcosnx1dx⇒(∫coskxsinxdx,∫sinkxcosxdx),(∫sinkx1dx,∫coskx1dx.)
3.3 【利用 t a n 2 x = s e c 2 x − 1 和 c o t 2 x = c s c 2 − 1 来 降 次 tan^2x=sec^2x-1和cot^2x=csc^2-1来降次 tan2x=sec2x−1和cot2x=csc2−1来降次】
【结合 d ( t a n x ) = s e c 2 x 和 d ( c o t ) = − c s c 2 x d(tanx)=sec^2x和d(cot)=-csc^2x d(tanx)=sec2x和d(cot)=−csc2x】
∫ ​ t a n n x d x = ∫ ​ t a n n − 2 x ( s e c 2 x − 1 ) d x = ∫ ​ t a n n − 2 x d ( t a n x ) − ∫ ​ t a n n − 2 x d x . ∫ ​ c o t n x d x = ∫ ​ c o t n − 2 ( c s c 2 − 1 ) d x = − ∫ ​ c o t n − 2 ( 1 − c s c 2 ) d x = − ( ∫ ​ c o t n − 2 x d x + ∫ ​ c o t n −