一元函数微分学知识点

导函数等价写法

三种导函数等价的写法

(1)y=f(x)在点x0处可导
(2)y=f(x)在点x0导数存在
(3)y’=f’(x)=A(A为有限数)

导函数为0的点是与函数的水平切线的交点

方程

切线方程
y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-y_0=f'(x_0)(x - x_0) yy0=f(x0)(xx0)

法线方程
y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x ) ≠ 0 y-y_0=-\frac{1}{f'(x_0)}(x - x_0), f'(x) \neq 0 yy0=f(x0)1(xx0),f(x)=0

高阶导
f ( n ) ( x 0 ) = lim ⁡ Δ x → 0 f ( n − 1 ) ( x 0 + Δ x ) − f ( n − 1 ) ( Δ x ) Δ x f^{(n)}(x_0)=\lim_{\Delta x \to0} \frac{f^{(n-1)}(x_0+\Delta x)-f^{(n-1)}(\Delta x)}{\Delta x} f(n)(x0)=Δx0limΔxf(n1)(x0+Δx)f(n1)(Δx)

可微的判别

(1)写增量
Δ y = f ( x 0 − Δ x ) − f ( x 0 ) \Delta y=f(x_0- \Delta x) - f(x_0) Δy=f(x0Δx)f(x0)
(2)写线性增量
A Δ x = f ′ ( x 0 ) Δ x A \Delta x = f'(x_0) \Delta x AΔx=f(x0)Δx
(3)做极限
lim ⁡ Δ x → 0 Δ y − A Δ x Δ x \lim_{\Delta x \to 0} \frac{\Delta y-A \Delta x}{\Delta x} Δx0limΔxΔyAΔx
如果极限为0说明增量和线性增量只差一个高阶无穷小,可以忽略不记,函数可微。否则不可微

可微和可导互为充要条件,可微即可导,可导即可微

驻点和极值点的区别

驻点是一阶导为0的点,不关心函数变化;驻点不一定是极值点;极值点不一定是驻点。

如:
y = x 3 , x = 0 y=x^3, x=0 y=x3,x=0此时是驻点而不是极值点
再如:
y = ∣ x ∣ , x = 0 y=|x|, x=0 y=x,x=0此时是极值点而不是驻点(该点不可导)

反函数的导数

d x d y = 1 d y d x \frac{dx}{dy}=\frac{1}{\frac{dy}{dx}} dydx=dxdy1

高阶求导

求导公式

[ u ± v ] ( n ) = u ( n ) ± v ( n ) [u\pm v]^{(n)}=u^{(n)}\pm v^{(n)} [u±v](n)=u(n)±v(n)
( u v ) n = u ( n ) v + C n 1 n ( n − 1 ) v ′ + C n 2 n ( n − 2 ) v ′ ′ … + C n n − 1 u ′ v ( n − 1 ) + u v ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{n}=u^{(n)}v+C_n^1n^{(n-1)}v'+C_n^2n^{(n-2)}v''…+C_n^{n-1}u'v^{(n-1)}+uv^{(n)} \\ =\sum_{k=0}^nC_n^ku^{(n-k)}v^{(k)} (uv)n=u(n)v+Cn1n(n1)v+Cn2n(n2)v′′+Cnn1uv(n1)+uv(n)=k=0nCnku(nk)v(k)

泰勒公式

任何一个无穷阶可导的函数(在收敛的情况下)都可以写成
y = f ( x ) = ∑ n = 0 ∞ f n ( x 0 ) n ! ( x − x 0 ) n y=f(x)=\sum_{n=0}^ {\infty} \frac{f^{{n}}(x_0)}{n!}(x-x_0)^n y=f(x)=n=0n!fn(x0)(xx0)n或者
y = f ( x ) = ∑ n = 0 ∞ f ( n ) n ! x n y=f(x)=\sum_{n=0}^ \infty \frac{f^{(n)}}{n!}x^n y=f(x)=n=0n!f(n)xn

常见幂级数
e x = ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 ! + … + x n n ! + … , − ∞ < x < + ∞ e^x=\sum_{n=0}^ \infty \frac{x^n}{n!}=1+x+\frac{x^2}{2!}+…+\frac{x^n}{n!}+…,-\infty<x<+\infty ex=n=0n!xn=1+x+2!x2++n!xn+,<x<+
1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − x 3 + … + ( − 1 ) n x n + … , − 1 < x < 1 \frac1{1+x}=\sum_{n=0}^\infty (-1)^nx^n=1-x+x^2-x^3+…+(-1)^nx^n+…,-1<x<1 1+x1=n=0(1)nxn=1x+x2x3++(1)nxn+,1<x<1
1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + … + x n + … , − 1 < x < 1 \frac1{1-x}=\sum_{n=0}^\infty x^n=1+x+x^2+…+x^n+…,-1<x<1 1x1=n=0xn=1+x+x2++xn+,1<x<1
l n ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n − 1 x n n = x − x 2 2 + x 3 3 + … + x n n + … , − 1 < x < 1 ln(1+x)=\sum_{n=0}^\infty (-1)^{n-1} \frac{x^n}n=x- \frac {x^2}{2}+\frac{x^3}3+…+\frac {x^n} n+…, -1<x<1 ln(1+x)=n=0(1)n1nxn=x2x2+3x3++nxn+1<x<1
s i n x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + … + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + … , − ∞ < x < + ∞ sinx=\sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{(2n+1)!}=x- \frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+…+(-1)^n\frac{x^{2n+1}}{(2n+1)!}+…,-\infty<x<+\infty sinx=n=0(1)n(2n+1)!x2n+1=x3!x3+5!x57!x7++(1)n(2n+1)!x2n+1+,<x<+
c o s x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + … + ( − 1 ) n x 2 n ( 2 n ) ! + … , − ∞ < x < + ∞ cosx=\sum_{n=0}^\infty(-1)^n\frac{x^{2n}}{(2n)!}=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+…+(-1)^n \frac{x^{2n}}{(2n)!}+…,-\infty<x<+\infty cosx=n=0(1)n(2n)!x2n=12!x2+4!x46!x6++(1)n(2n)!x2n+,<x<+

( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + … + α ( α − 1 ) … ( α − n − 1 ) n ! x n + … , { x ∈ ( − 1 , 1 ) ,当 α ≤ 1 x ∈ ( − 1 , 1 ] , 当 − 1 < α < 0 x ∈ [ − 1 , 1 ] , 当 α > 0 (1+x)^\alpha =1+\alpha x + \frac{\alpha(\alpha-1)}{2!}x^2+…+\frac{\alpha(\alpha-1)…(\alpha-n-1)}{n!}x^n+…,\left\{\begin{matrix}x\in (-1,1),当\alpha \leq 1 \\ x \in (-1, 1], 当-1<\alpha<0 \\ x \in [-1, 1], 当\alpha >0 \end{matrix}\right. (1+x)α=1+αx+2!α(α1)x2++n!α(α1)(αn1)xn+ x(1,1),当α1x(1,1],1<α<0x[1,1],α>0

根据函数展开式的唯一性比较公式中的系数就可以获得n阶导

一些容易被忘记的求导公式

( t a n x ) ′ = s e c 2 x (tanx)'=sec^2x (tanx)=sec2x
( c o t x ) ′ − c s c 2 x (cotx)'-csc^2x (cotx)csc2x
( s e c x ) ′ = s e c x t a n x (secx)'=secxtanx (secx)=secxtanx
( c s c x ) ′ = − c s c x c o t x (cscx)'=-cscxcotx (cscx)=cscxcotx
[ l n ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 [ln(x+\sqrt{x^2+1})]'=\frac 1{\sqrt{x^2+1}} [ln(x+x2+1 )]=x2+1 1
[ l n ( x + x 2 − 1 ) ] ′ = 1 x 2 − 1 [ln(x+\sqrt{x^2-1})]'=\frac 1{\sqrt{x^2-1}} [ln(x+x21 )]=x21 1

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾醒(AiXing-w)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值