1.不定积分
文章目录
1.1 原函数
1.1.1 原函数与不定积分的定义
原函数定义:
f(x) 定义在某个区间上,对于这个区间的各点,存在一个可导函数F’(x)=f(x),则称F(x)是f(x)的原函数,∫f(x)dx=F(x)+c 叫做区间I上的不定积分。
1.1.2 原函数存在定理
原函数存在定理(不定积分存在定理):
- 连续函数必有原函数
反之不成立,有振荡间断点的函数,也可能有原函数
2.含有第一类间断点和无穷间断点的函数f(x),在包含该间断点的区间内必没有间断点
除了振荡间断点可能存在原函数,存在其他间断点肯定没有原函数
--------------------------------------------------------------------------
如何求判断一个函数是否存在原函数(以分段函数为例) |
2️⃣若上一步没判断出来,先写出它的原函数。若该函数不连续或不可导也说明不存在原函数,因为原函数必可导,可导必连续
如何求一个函数的原函数(以分段函数为例) |
注意保证原函数连续,这是一个讨论点
--------------------------------------------------------------------------
2.定积分
写在最前,定积分本质就是个数,这句话是做题的钥匙。
2.1 定积分的定义
个人理解定义:
一条曲线对应的横坐标,取无数个,每两个横坐标之间就组成了一个小块,在这些小块里取最大的一个写作德尔塔x,在这些小块中任意取一一个高,ξk就是高所对应的横坐标,把这些小块求和就曲边梯形的面积
公式:
2.2 定积分的精确定义
精确定义意味着,我们限定了两个端点a和b,把a到b这段区间分成n块,ξ取每个小块的最右端点
2.3 定积分的几何意义
曲面梯形的面积,注意有正有负,相加计算
2.4 定积分的存在定理
充分条件:
- f(x)在a到b闭区间连续,定积分存在
- f(x)在a到b闭区间单调,定积分存在
- f(x)在a到b闭区间上有界,且只有有限个第一类间断点,定积分存在
振荡间断点如果是有界振荡,定积分存在,无穷间断点肯定不行
必要条件:
可积函数必有界,积分区间对应定义域
🧐小思考
为什么定积分存在,原函数不一定存在?(也就是定积分存在,不定积分不一定存在)
定积分限定了区间的端点,里面不含有第一类振荡间断点和无穷间断点,但是整个原函数的定义区间上,可能存在那些间断点
2.5 定积分的性质

积分的保号性(加上积分符号的性质):
简单来说,就是区间上的函数对应f(x)≤g(x),加上积分号仍然成立
特殊的,外加绝对值的积分≤内加绝对值的积分
假如一个函数f(x)不恒等于零且非负,那么加上积分号,必>0
估值定理:
设m和M是f(x)在[a,b]上的最大值和最小值,L为区间[a,b]的长度,则有
m
L
≤
∫
a
b
f
(
x
)
d
x
≤
M
L
mL \leq \int \limits_{a}^{b}f\left(x\right)dx \leq ML
mL≤a∫bf(x)dx≤ML
积分中值定理:
积分中值定理,开区间连续,闭区间可导,存在一点
c
在
(
a
,
b
)
之间
,
使得
∫
a
b
f
(
x
)
d
x
=
(
b
−
a
)
f
(
c
)
积分中值定理,开区间连续,闭区间可导,存在一点c在\left(a,b\right)之间,使得\int _{a}^{b}f\left(x\right)dx = \left(b - a\right)f\left(c\right)
积分中值定理,开区间连续,闭区间可导,存在一点c在(a,b)之间,使得∫abf(x)dx=(b−a)f(c)
广义的积分中值定理:
若 f ( x ) , g ( x ) 在 [ a , b ] 上连续,且 g ( x ) 不变号,则 ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x , ( a ≤ ξ ≤ b ) 若f\left(x\right),g\left(x\right)在\left[a,b\right]上连续,且g\left(x\right)不变号,则\\\int \limits_{a}^{b}f\left(x\right)g\left(x\right)dx = f\left(\xi \right)\int \limits_{a}^{b}g\left(x\right)dx,\left(a \leq \xi \leq b\right) 若f(x),g(x)在[a,b]上连续,且g(x)不变号,则a∫bf(x)g(x)dx=f(ξ)a∫bg(x)dx,(a≤ξ≤b)
2.6 定积分的补充结论
补充1:
可积的性质(加减乘后是否可积)
根据定积分的定义,不难得知,判断加减乘除后是否可积和判断极限存在是一样的。
第一组:
(1) 可积加减可积=可积
(2) 可积加减不可积=不可积
(3) 不可积加减不可积=不确定
第二组:
(1) 可积乘可积=可积
(2) 可积乘不可积=不一定
(3) 不可积乘不可积=不一定
补充2:
补充3:
3.变限积分
3.1 变限积分的定理
如何理解变限积分
变限积分其实就是定积分的推广,上限和下限非固定的数,而是可以变化的数,故x看成常数,能够提出来。
3.2 变限积分的性质
本小节比较重要
1.连续性:
若
f
(
x
)
在
[
a
,
b
]
上可积,则
∫
a
x
f
(
t
)
d
t
在
[
a
,
b
]
上连续
若f(x)在[a,b]上可积,则\int \limits_{a}^{x}f\left(t\right)dt在\left[a,b\right]上连续
若f(x)在[a,b]上可积,则a∫xf(t)dt在[a,b]上连续
简记:函数可积,变上限积分连续
可积:可以积分的意思,函数存在有限个第一类间断点可积,但是第二类不行。函数闭区间可积的充要条件是闭区间有界,存在有限个间断点。
但是存在间断点,会破坏连续性
有界振荡可积
2.可导性:
若
f
(
x
)
在
[
a
,
b
]
上连续,则
∫
a
x
f
(
t
)
d
t
在
[
a
,
b
]
上可导
,
F
′
(
x
)
=
f
(
x
)
若f(x)在[a,b]上连续,则\int \limits_{a}^{x}f\left(t\right)dt在\left[a,b\right]上可导,F'\left(x\right) = f\left(x\right)
若f(x)在[a,b]上连续,则a∫xf(t)dt在[a,b]上可导,F′(x)=f(x)
简记:函数连续,变上限积分可导
补充,可导的条件比可积强烈。
f(x)可导➡️连续➡️可积➡️有界
假如不连续,存在第一类间断点,我们讨论在不定积分在一点x上可导的结论:
为什么不讨论第二类间断点,第二类间断点直接就不可积了,没有讨论的必要性了。
若是可去间断点,可导,且 F ′ ( x 0 ) = lim x → x 0 f ( x ) 若是跳跃间断点,连续但不可导,且 F ( x ) 左导数 = 左函数值, F ( x ) 右导数 = 右函数值 若是可去间断点,可导,且F'\left(x_{0}\right) = \lim \limits_{x\rightarrow x_{0}}f\left(x\right)\\若是跳跃间断点,连续但不可导,且F\left(x\right)左导数 = 左函数值,F\left(x\right)右导数 = 右函数值 若是可去间断点,可导,且F′(x0)=x→x0limf(x)若是跳跃间断点,连续但不可导,且F(x)左导数=左函数值,F(x)右导数=右函数值
可去间断点,左导数=右导数,可导,但是该点不存在,只能算极限
跳跃间断点:左导数≠右导数,所以不可导,可积就连续,自然连续。
图解大总结:
3.奇偶性:
设f(x)连续
1.
若
f
(
x
)
是奇函数,则
∫
0
x
f
(
t
)
d
t
为偶函数,
0
可以改成
a
2.
若
f
(
x
)
是偶函数,则
∫
0
x
f
(
t
)
d
t
为奇函数,
0
不可以改成
a
1.若f\left(x\right)是奇函数,则\int \limits_{0}^{x}f\left(t\right)dt为偶函数,0可以改成a\\2.若f\left(x\right)是偶函数,则\int \limits_{0}^{x}f\left(t\right)dt为奇函数,0不可以改成a
1.若f(x)是奇函数,则0∫xf(t)dt为偶函数,0可以改成a2.若f(x)是偶函数,则0∫xf(t)dt为奇函数,0不可以改成a
补充一点知识:
连续的奇函数,所有原函数都是偶函数,但是连续的偶函数,所有原函数不都是奇函数
因为原函数要+C,我们不能发现,偶函数+C后,还是关于y轴对称,但是奇函数+C后,可不一定关于原点对称。
f(x)只有连续,变上限积分才是他的原函数。
4.反常积分
5.做题总结
总结一:
在某些计算不定积分(变限积分)的题目中,会给一些看似无用的点的值,如f(1)=0,f(0)=1这种,实际上是为了让你求不定积分算完后的c,用代入的方法。
总结二:
在变限积分相关题目中,会出现被积函数中,存在绝对值的情况,考虑是通过拆分积分上下限,去掉绝对值。
∫ − a a | x − t | d t = ∫ − a x ( x − t ) d t + ∫ x a ( t − x ) d t \int \limits_{ - a}^{a}|x - t|dt = \int \limits_{ - a}^{x}\left(x - t\right)dt + \int \limits_{x}^{a}\left(t - x\right)dt −a∫a|x−t|dt=−a∫x(x−t)dt+x∫a(t−x)dt
6.重难点题型总结
6.1 有关定积分定义的小题
将数列极限的和写成定积分的形式,核心点在于找k/n
例题:
6.2 已知一个分段函数,求它的一个原函数
已知一个函数,求它的一个原函数,就是求他的不定积分,就是加一个C,但是,如果是分段函数的话,如果分成两段就会有C1,C2,因为函数可积,原函数必连续可知,得到的新的带有C1和C2的原函数是连续的,计算极限趋近于分段点,即可得到C1和C2的关系,即可进一步书写表达式。
题目例如:880第三章基础篇选择(5)