高等数学 第七讲 一元函数积分学的概念和性质_不定积分_定积分_变限积分_反常积分

1.不定积分

1.1 原函数

1.1.1 原函数与不定积分的定义

原函数定义:
f(x) 定义在某个区间上,对于这个区间的各点,存在一个可导函数F’(x)=f(x),则称F(x)是f(x)的原函数,∫f(x)dx=F(x)+c 叫做区间I上的不定积分。

1.1.2 原函数存在定理

原函数存在定理(不定积分存在定理):

  1. 连续函数必有原函数

反之不成立,有振荡间断点的函数,也可能有原函数

2.含有第一类间断点和无穷间断点的函数f(x),在包含该间断点的区间内必没有间断点

除了振荡间断点可能存在原函数,存在其他间断点肯定没有原函数

--------------------------------------------------------------------------

如何求判断一个函数是否存在原函数(以分段函数为例)
1️⃣基本判断:看看是否为连续函数,连续函数必存在,若有间断点,除非是振荡间断点,没有原函数。

2️⃣若上一步没判断出来,先写出它的原函数。若该函数不连续或不可导也说明不存在原函数,因为原函数必可导,可导必连续

如何求一个函数的原函数(以分段函数为例)

注意保证原函数连续,这是一个讨论点

--------------------------------------------------------------------------

2.定积分

写在最前,定积分本质就是个数,这句话是做题的钥匙。

2.1 定积分的定义

个人理解定义:

一条曲线对应的横坐标,取无数个,每两个横坐标之间就组成了一个小块,在这些小块里取最大的一个写作德尔塔x,在这些小块中任意取一一个高,ξk就是高所对应的横坐标,把这些小块求和就曲边梯形的面积

公式:
在这里插入图片描述

2.2 定积分的精确定义

精确定义意味着,我们限定了两个端点a和b,把a到b这段区间分成n块,ξ取每个小块的最右端点
在这里插入图片描述

2.3 定积分的几何意义

曲面梯形的面积,注意有正有负,相加计算

2.4 定积分的存在定理

充分条件:

  1. f(x)在a到b闭区间连续,定积分存在
  2. f(x)在a到b闭区间单调,定积分存在
  3. f(x)在a到b闭区间上有界,且只有有限个第一类间断点,定积分存在

振荡间断点如果是有界振荡,定积分存在,无穷间断点肯定不行

必要条件:
可积函数必有界,积分区间对应定义域

🧐小思考

为什么定积分存在,原函数不一定存在?(也就是定积分存在,不定积分不一定存在)
定积分限定了区间的端点,里面不含有第一类振荡间断点和无穷间断点,但是整个原函数的定义区间上,可能存在那些间断点

2.5 定积分的性质

积分的保号性(加上积分符号的性质):

简单来说,就是区间上的函数对应f(x)≤g(x),加上积分号仍然成立
特殊的,外加绝对值的积分≤内加绝对值的积分
假如一个函数f(x)不恒等于零且非负,那么加上积分号,必>0

估值定理:
设m和M是f(x)在[a,b]上的最大值和最小值,L为区间[a,b]的长度,则有
m L ≤ ∫ a b f ( x ) d x ≤ M L mL \leq \int \limits_{a}^{b}f\left(x\right)dx \leq ML mLabf(x)dxML

积分中值定理:
积分中值定理,开区间连续,闭区间可导,存在一点 c 在 ( a , b ) 之间 , 使得 ∫ a b f ( x ) d x = ( b − a ) f ( c ) 积分中值定理,开区间连续,闭区间可导,存在一点c在\left(a,b\right)之间,使得\int _{a}^{b}f\left(x\right)dx = \left(b - a\right)f\left(c\right) 积分中值定理,开区间连续,闭区间可导,存在一点c(a,b)之间,使得abf(x)dx=(ba)f(c)

广义的积分中值定理:

若 f ( x ) , g ( x ) 在 [ a , b ] 上连续,且 g ( x ) 不变号,则 ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x , ( a ≤ ξ ≤ b ) 若f\left(x\right),g\left(x\right)在\left[a,b\right]上连续,且g\left(x\right)不变号,则\\\int \limits_{a}^{b}f\left(x\right)g\left(x\right)dx = f\left(\xi \right)\int \limits_{a}^{b}g\left(x\right)dx,\left(a \leq \xi \leq b\right) f(x),g(x)[a,b]上连续,且g(x)不变号,则abf(x)g(x)dx=f(ξ)abg(x)dx,(aξb)

2.6 定积分的补充结论

补充1:
可积的性质(加减乘后是否可积)

根据定积分的定义,不难得知,判断加减乘除后是否可积和判断极限存在是一样的。
第一组:
(1) 可积加减可积=可积
(2) 可积加减不可积=不可积
(3) 不可积加减不可积=不确定
第二组:
(1) 可积乘可积=可积
(2) 可积乘不可积=不一定
(3) 不可积乘不可积=不一定


补充2:
在这里插入图片描述

补充3:
在这里插入图片描述

3.变限积分

3.1 变限积分的定理

如何理解变限积分
变限积分其实就是定积分的推广,上限和下限非固定的数,而是可以变化的数,故x看成常数,能够提出来。

3.2 变限积分的性质

本小节比较重要

1.连续性
若 f ( x ) 在 [ a , b ] 上可积,则 ∫ a x f ( t ) d t 在 [ a , b ] 上连续 若f(x)在[a,b]上可积,则\int \limits_{a}^{x}f\left(t\right)dt在\left[a,b\right]上连续 f(x)[a,b]上可积,则axf(t)dt[a,b]上连续
简记:函数可积,变上限积分连续

可积:可以积分的意思,函数存在有限个第一类间断点可积,但是第二类不行。函数闭区间可积的充要条件是闭区间有界,存在有限个间断点。
但是存在间断点,会破坏连续性
有界振荡可积

2.可导性
若 f ( x ) 在 [ a , b ] 上连续,则 ∫ a x f ( t ) d t 在 [ a , b ] 上可导 , F ′ ( x ) = f ( x ) 若f(x)在[a,b]上连续,则\int \limits_{a}^{x}f\left(t\right)dt在\left[a,b\right]上可导,F'\left(x\right) = f\left(x\right) f(x)[a,b]上连续,则axf(t)dt[a,b]上可导,F(x)=f(x)
简记:函数连续,变上限积分可导

补充,可导的条件比可积强烈。
f(x)可导➡️连续➡️可积➡️有界

假如不连续,存在第一类间断点,我们讨论在不定积分在一点x上可导的结论:

为什么不讨论第二类间断点,第二类间断点直接就不可积了,没有讨论的必要性了。

若是可去间断点,可导,且 F ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) 若是跳跃间断点,连续但不可导,且 F ( x ) 左导数 = 左函数值, F ( x ) 右导数 = 右函数值 若是可去间断点,可导,且F'\left(x_{0}\right) = \lim \limits_{x\rightarrow x_{0}}f\left(x\right)\\若是跳跃间断点,连续但不可导,且F\left(x\right)左导数 = 左函数值,F\left(x\right)右导数 = 右函数值 若是可去间断点,可导,且F(x0)=xx0limf(x)若是跳跃间断点,连续但不可导,且F(x)左导数=左函数值,F(x)右导数=右函数值

可去间断点,左导数=右导数,可导,但是该点不存在,只能算极限
跳跃间断点:左导数≠右导数,所以不可导,可积就连续,自然连续。

图解大总结:
在这里插入图片描述

3.奇偶性:
设f(x)连续
1. 若 f ( x ) 是奇函数,则 ∫ 0 x f ( t ) d t 为偶函数, 0 可以改成 a 2. 若 f ( x ) 是偶函数,则 ∫ 0 x f ( t ) d t 为奇函数, 0 不可以改成 a 1.若f\left(x\right)是奇函数,则\int \limits_{0}^{x}f\left(t\right)dt为偶函数,0可以改成a\\2.若f\left(x\right)是偶函数,则\int \limits_{0}^{x}f\left(t\right)dt为奇函数,0不可以改成a 1.f(x)是奇函数,则0xf(t)dt为偶函数,0可以改成a2.f(x)是偶函数,则0xf(t)dt为奇函数,0不可以改成a

补充一点知识:

连续的奇函数,所有原函数都是偶函数,但是连续的偶函数,所有原函数不都是奇函数
因为原函数要+C,我们不能发现,偶函数+C后,还是关于y轴对称,但是奇函数+C后,可不一定关于原点对称。

f(x)只有连续,变上限积分才是他的原函数。

4.反常积分

反常积分基础知识_反常积分敛散性判别方法_比较审敛法详解

5.做题总结

总结一:

在某些计算不定积分(变限积分)的题目中,会给一些看似无用的点的值,如f(1)=0,f(0)=1这种,实际上是为了让你求不定积分算完后的c,用代入的方法。

总结二:

在变限积分相关题目中,会出现被积函数中,存在绝对值的情况,考虑是通过拆分积分上下限,去掉绝对值。
∫ − a a | x − t | d t = ∫ − a x ( x − t ) d t + ∫ x a ( t − x ) d t \int \limits_{ - a}^{a}|x - t|dt = \int \limits_{ - a}^{x}\left(x - t\right)dt + \int \limits_{x}^{a}\left(t - x\right)dt aaxtdt=ax(xt)dt+xa(tx)dt

6.重难点题型总结

6.1 有关定积分定义的小题

将数列极限的和写成定积分的形式,核心点在于找k/n

例题:
在这里插入图片描述

6.2 已知一个分段函数,求它的一个原函数

已知一个函数,求它的一个原函数,就是求他的不定积分,就是加一个C,但是,如果是分段函数的话,如果分成两段就会有C1,C2,因为函数可积,原函数必连续可知,得到的新的带有C1和C2的原函数是连续的,计算极限趋近于分段点,即可得到C1和C2的关系,即可进一步书写表达式。

题目例如:880第三章基础篇选择(5)

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二叉树果实

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值