Hello???,今天带来算法打卡第二弹:2^k进制数
原题链接:2^k进制数
问题 1110: 2^k进制数
时间限制: 1Sec 内存限制: 128MB 提交: 222 解决: 117
题目描述
设r是个2^k 进制数,并满足以下条件:
(1)r至少是个2位的2^k 进制数。
(2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位。
(3)将r转换为2进制数q后,则q的总位数不超过w。
在这里,正整数k(1≤k≤9)和w(k〈w≤30000)是事先给定的。
问:满足上述条件的不同的r共有多少个?
我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q。将S从右起划分为若干个长度为k 的段,每段对应一位2^k进制的数,如果S至少可分成2段,则S所对应的二进制数又可以转换为上述的2^k 进制数r。
例:设k=3,w=7。则r是个八进制数(2^3=8)。由于w=7,长度为7的01字符串按3位一段分,可分为3段(即1,3,3,左边第一段只有一个二进制位),则满足条件的八进制数有:
2位数:高位为1:6个(即12,13,14,15,16,17),高位为2:5个,…,高位为6:1个(即67)。共6+5+…+1=21个。
3位数:高位只能是1,第2位为2:5个(即123,124,125,126,127),第2位为3:4个,…,第2位为6:1个(即167)。共5+4+…+1=15个。
所以,满足要求的r共有36个。输入
只有1行,为两个正整数,用一个空格隔开:
k w输出
1行,是一个正整数,为所求的计算结果,即满足条件的不同的r的个数(用十进制数表示),要求最高位不得为0,各数字之间不得插入数字以外的其他字符(例如空格、换行符、逗号等)。
(提示:作为结果的正整数可能很大,但不会超过200位)样例输入
3 7样例输出
36
简介:
相信大家看完这道题大概也能明白大概题意:
1.r是个2^k 进制数(2,4,8……)
2.r至少是个2位的2^k 进制数。
3.除最后一位外,r的每一位严格小于它右边相邻的那一位。
4.将r转换为2进制数q后,则q的总位数不超过w。
5.正整数k(1≤k≤9)和w(k〈w≤30000)是事先给定的
就比如k=3, w=8
2^3=8 => r是一个8进制数,换算成二进制后r有8位:00 000 000;
符合r的数举例:00 001 011 => 13 , 01 010 111 => 127
本题中用到了排列组合思想,我先将排列组合的公式给大家列出来:
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
解题思路:
参考了网上大牛的优质解答:“运用减法思维求解”
如果我们仔细思考我们不难发现:让 r 每一位数都严格小于它右边的那一位,其实等效于”保证 r 每个位置上的数不相同,再把它们从小到大排列“,这样就变成了一个排列组合问题,我们只需从第二个数(从右往左)一直计算当前位置的排列数,最后加起来即可
因为除最高位以外,别的位置的范围都是从 1 到 ”进制数减去当前位置” (如8进制的取值范围为:1-7)
所以先计算除最高位以外的排列数,再计算最高位的排列数,最将两者相加
注意事项
最高位的排列数应该用减法思维,即拿k=3,w=8来说,最高位只能取1-3,实际计算的时候应该拿最高位可以取1-7的情况减去最高位可以取4-7的情况,因为假设最高位取了2,后面只能比前面大,所以此时要排除后面取1和2的情况,计算量大。如果计算4-7,则最高位和后面都只能取4-7,不存在最高位能取后面不能取的情况,即最高位和后面都只能取4-7等于从4张牌里挑3张,共4种,最高位可以取1-7即7张牌里挑3张,共35种,35减4=31
最终答案用最高位排列数加上最高位以外的排列数即 31+21=52 (21的出处:C[7,2]=21)
参考代码:
package com.hsk.raiseExercise;
import java.util.Scanner;
public class K进制 {
//C(n-1)(m)计算排列数,其中n为最大数值+1(进制),m为当前位置
private static long C (int n,int m){
int i;
long sum = 1;
for(i=1;i<=m;i++){ //计算 (n-1)!/(n-1-m)!
sum*=(n-i);
}
for(i=2;i<=m;i++){//用上一个循环计算出来的sum/m!
//就完成了排列组合(排列组合公式:c=(n-1)!/(m!+(n-1-m)!) )
sum/=i;
}
return sum;
}
public static void main(String[] args) {
long sum=0; //sum用于计算符合的总数
int k,w,jin,wei,high; //jin为X进制,wei为位数,high为最高位能取得的最大数
Scanner scan = new Scanner(System.in);
k = scan.nextInt();
w = scan.nextInt();
jin = (int) Math.pow(2, k);
if(w%k==0){ //如果w能除尽k,则wei=w/k; 如果不能则使wei+1;
wei = w/k;
}else{
wei = w/k+1;
}
high=(int) (Math.pow(2,w%k)-1);//假设w能除尽k,最高位high能取得的最大数为0
//从第二位开始(从右往左),对每一位数(除最高位)计算排列数
for(int i=2; i<wei; i++){
sum += K进制.C(jin, i);
}
//计算最高位排列数(high==0 时无需进行这一步计算)
if(high != 0){
sum += (K进制.C(jin,wei) - K进制.C(jin-high,wei));
}
System.out.println(sum);
}
}