目标检测
文章平均质量分 94
不断进步的咸鱼
秃头女孩,不服输!
展开
-
【目标检测】Receptive Field Block Net for Accurate and Fast Object Detection论文理解
摘要 目标检测器现状: (1)目前性能最好的目标检测器依赖于深度CNN骨干,如ResNet-101和Inception,拥有强大的特征表示,但承受着高计算成本。 (2)一些基于轻量级模型的检测器实现了实时处理,但其准确性通常降低。 本文: 探索了一种替代方法,通过使用手工制作的机制来加强轻量级特征,从而建立一个快速和准确的检测器。受人类视觉系统感受域(RFs,Receptive Fields )的启发,提出新型感受野模块(RFB,Receptive Field Block),考虑感受野(原创 2021-06-21 16:49:54 · 2319 阅读 · 0 评论 -
【目标检测】CBNet: A Novel Composite Backbone Network Architecture for Object Detection论文理解
文章目录摘要1 介绍2 相关工作3 提出的方法3.1 CBNet架构3.2 其他可能的复合样式3.3 基于CBNet的检测网络体系结构4 实验4.1 实现细节4.2 检测结果4.3 与不同组合风格的比较4.4 共享CBNet的权重4.5 CBNet骨干数量4.6 CBNet的加速版本4.7 基于CBNet的基础特征增强的有效性5 结论摘要 基于CNN的检测器: 现有的基于CNN的检测器中,骨干网是基本特征提取的一个非常重要的组成部分,检测器的性能很大程度上依赖于骨干网。 本文: 目标是通过原创 2021-04-18 15:52:27 · 1029 阅读 · 0 评论 -
【目标检测】Cascade R-CNN: Delving into High Quality Object Detection论文理解
文章目录摘要1 介绍2 相关工作3 目标检测3.1 边界框回归3.2 分类3.3 检测质量4 Cascade R-CNN4.1 级联边界框回归4.2 级联检测5 实验结果5.1 实现细节5.1.1 baseline网络5.2 质量不匹配5.3 与迭代BBox和Integral损失的比较5.4 消融实验5.5 与最先进检测器的比较5.6 泛化能力6 结论摘要 在目标检测中,需要一个交并比(IoU)阈值来定义正和负样本。用较低的IoU阈值(如0.5)训练的目标检测器通常会产生噪声检测。然而,检测性能往往会原创 2021-04-17 15:02:53 · 1004 阅读 · 0 评论 -
【目标检测】CenterNet:Objects as Points论文理解
文章目录摘要1 介绍2 相关工作3 准备工作4 目标作为点4.1 3D检测4.2 人体姿态估计5 实现细节6 实验6.1 目标检测6.1.1 额外实验6.2 3D检测6.3 姿态估计7 结论8 附录8.1 附录A——碰撞实验细节8.2 附录B——Pascal VOC实验8.3 附录C——错误分析摘要 目标检测: 将目标识别为图像中与轴对齐的方框。大多数成功的目标检测器列举出几乎详尽的潜在目标位置列表,并进行分类。这种方式浪费、效率低下,并且需要额外的后处理。 本文: 采用了一种不同的方原创 2021-03-22 15:15:50 · 1905 阅读 · 2 评论 -
【目标检测】CenterNet: Keypoint Triplets for Object Detection论文理解
文章目录摘要1 引言2 相关工作3 本文方法3.1 基线和动机3.2 目标检测当做关键点三元组3.3 丰富中心点和角点信息3.4 训练和推断4 实验4.1 数据集、指标和基线4.2 与最先进的探测器的比较4.3 不正确的边界框缩减4.4 推理速度4.5 消融研究4.6 错误分析5 结论摘要 在对象检测中,基于关键点的方法经常会遇到大量不正确的对象边界框,这可能是由于缺少对裁剪区域的额外查看。本文提出了一种有效的解决方案,以最小的代价探索每个裁切区域内的视觉模式。我们将我们的框架建立在一个有代表性的基于原创 2021-03-19 16:42:40 · 1063 阅读 · 0 评论 -
【目标检测】CornerNet: Detecting Objects as Paired Keypoints论文理解
文章目录摘要1 引言2 相关工作2.1 两阶段检测器2.2 单阶段检测器2.3 anchor free的检测器3 CornerNet3.1 概述3.2 检测角点3.3 分组角点3.4 角点池化3.5 沙漏网络4 实验4.1 训练细节4.2 测试细节4.3 MS COCO4.4 消融研究4.4.1 Corner Pooling4.4.2 在更大区域Corner Pooling的稳定性4.4.3 减少对负位置的惩罚4.4.4 沙漏网络4.4.5 边界框的质量4.4.6 误差分析4.5 与最先进的探测器的比较5原创 2021-03-17 21:19:41 · 1170 阅读 · 0 评论 -
【目标检测】ROIMIX: PROPOSAL-FUSION AMONG MULTIPLE IMAGES FOR UNDERW ATER OBJECT DETECTION
ROIMIX摘要1 介绍2 相关工作2.1 数据增强2.2 Faster R-CNN及其变体3 方法论3.1 算法3.2 讨论4 实验4.1 URPC数据集的实验4.2 PASCAL VOC数据集的实验4.3 稳定性和鲁棒性5 结论摘要 目标检测现状: 近年来,通用目标检测算法证明了其优异的性能。然而,对水下目标检测的研究还很少。 水下图像数据集的特点: 与一般数据集相比,水下图像通常存在色差和低对比度,沉积物会导致水下图像模糊。此外由于水下生物的生活习惯,它们在图像上经常出现在一起(重叠原创 2021-03-14 16:17:54 · 1606 阅读 · 2 评论 -
【目标检测】Inside-Outside Net(ION)论文理解
摘要 众所周知,上下文和多尺度特征对于精确的视觉识别非常重要。 本文: 提出Inside-Outside Net(ION),一种利用感兴趣区域内部、外部信息的目标检测器。在外部利用空间循环神经网络对感兴趣区域外部的上下文信息进行集成。在内部使用跳跃池化在多个尺度和抽象层上提取多尺度信息。 实验: 评估了设计空间,并为读者提供了一个关于哪些技巧是重要的概述。ION在PASCAL VOC 2012、MS COCO数据集上表现优越——上下文和多尺度特征改善了小目标检测。1 介绍 当前目原创 2020-12-26 10:40:13 · 3204 阅读 · 6 评论 -
【目标检测】FSSD论文理解
摘要 SSD (Single Shot Multibox Detector): 是目前最好的目标检测算法之一,它具有精度高、速度快的优点。然而SSD的特征金字塔检测方法难以融合不同尺度的特征。 FSSD: 本文提出特征融合SSD(Feature Fusion Single Shot multi - box Detector, FSSD),这是一种改进的特征融合算法,采用了一种新型的、轻量级的特征融合模块,可以在速度稍有下降的情况下显著提高SSD的性能。特征融合模块,将不同层的不同尺度的特征拼原创 2020-12-21 13:17:56 · 7299 阅读 · 3 评论 -
【目标检测】Faster RCNN代码实现——(2)
文章目录一、项目总览二、model文件夹2.1 faster_rcnn.py2.1 faster_rcnn_vgg16.py2.3 region_proposal_network.py2.4 bbbox_tools.py2.5 creator_tools.py一、项目总览二、model文件夹2.1 faster_rcnn.py 本py文件用于构建Faster RCNN模型的基类,子类重写该类中的方法或新增方法,来定义想要的模型。from __future__ import absolut原创 2020-09-10 14:43:32 · 1336 阅读 · 0 评论 -
【目标检测】Faster RCNN代码实现 ——(1)
文章目录一、项目总览二、data文件夹代码解析2.1 dataset.py2.2 voc_dataset.py2.3 utils.py一、项目总览二、data文件夹代码解析2.1 dataset.py (1)inverse_normalize():将图片数组的值(范围为-1~1,有固定的均值和标准差)反规范化,还原到原始图像的像素值。 (2)pytorch_normalze()、caffe_normalize:将图片数组的值规范化,使得图像数组的值均值为mean,标准差为std。 (原创 2020-09-10 11:26:49 · 1546 阅读 · 1 评论 -
【目标检测】MaskRCNN论文理解
摘要 MaskRCNN简介: 简单、灵活、通用的目标实例分割框架,可以有效地检测图像中的目标,同时为每个实例生成一个高质量的分割掩码(mask)。它通过添加预测对象掩码的分支和用于边界框识别的现有分支并行地扩展R-CNN。Mask R-CNN训练起来很简单,只为更快的R-CNN增加了少量开销,运行速度为5 fps。此外,Mask R-CNN很容易推广到其他任务,例如,允许我们在同一框架内估计人体姿势。我们展示了COCO挑战套件的所有三个轨迹的最高结果,包括实例分割、边界框对象检测和人物关键点检测。没原创 2020-08-17 14:39:44 · 1670 阅读 · 0 评论 -
【目标检测】FPN论文理解
摘要 特征金字塔:是检测系统中用于检测不同尺度目标的基本组件,但最近的深度学习目标检测器避免了使用金字塔特征,原因是计算代价高昂和消耗。 本文:利用深度卷积网络固有的多尺度、金字塔层次结构,构建特征金字塔,提出了一种具有横向连接的自顶向下的结构,用于构建各种尺度的高层语义特征图。这种架构被称为特征金字塔网络(FPN),是一种通用的特征抽取器。 在基本Faster R-CNN系统中使用FPN,在COCO检测基准上实现了最先进的结果。此外该方法可以在GPU上以6fps的速度运行,因此是一种实用而精确原创 2020-07-19 11:40:34 · 1329 阅读 · 0 评论 -
【目标检测】YOLOv3代码实现之Pytorch
一、资源下载1.1 代码下载 项目代码:https://github.com/eriklindernoren/PyTorch-YOLOv3?from=singlemessage 整个项目的结构如下图: 1.2 权重下载 预训练权重:https://pjreddie.com/media/files/yolov3.weights 将下载的权重放入weight文件夹,如下图: 二、源码解析2.1 config文件夹原创 2020-07-05 16:02:05 · 7671 阅读 · 23 评论 -
【目标检测】常用概念AP和mAP
一、基础概念1.1 IOU(Intersection Over Union) IOU阈值用来表示两个边界框之间的重合度 1.2 TP、FP、FN、TN True Positive (TP): A correct detection正确预测. Detection with IOU ≥ threshold False Positive (FP): A wrong detection错误预测. Detection with IOU < thresho原创 2020-05-28 11:31:06 · 2609 阅读 · 0 评论 -
【目标检测】YOLOv4论文理解
文章目录摘要一、引言二、相关工作2.1 目标检测模型2.2 Bag of freebies2.3. Bag of specials三、方法论3.1 架构选择3.2 BoF和BoS的选择3.3 进一步改进3.4 YOLOv4四、实验4.1 实验设置4.2 不同特征对分类器训练的影响4.3 不同特征对检测器训练的影响4.4 不同的骨骼和预先训练的重量对检波器训练的影响4.5 不同的小批尺寸对检测器培训的影响五、结果六、总结摘要 大量的技巧可以提高卷积神经网络(CNN)的准确性: (1)专用特性:一些特原创 2020-05-27 19:19:32 · 1804 阅读 · 0 评论 -
【目标检测】Relation Networks for Object Detection
文章目录一、介绍1.1 对象间的关系1.2 对象关系模块二、相关工作三、对象关系模块3.1 注意力模块3.2 对象关系模块四、用于目标检测的Relation Network4.1 对象检测管道回顾4.2 关系模块用于实例识别4.3关系模块用于重复删除4.4 端对端目标检测五、实验5.1 关系模块用于实例识别5.2 关系模块用于重复删除5.3 端对端目标检测六、结论一、介绍 论文地址:https://arxiv.org/abs/1711.11575 CVPR2018的文章,通过引入object re原创 2020-05-25 17:07:50 · 2007 阅读 · 0 评论 -
【目标检测】Detection in Crowded Scenes: One Proposal, Multiple Predictions
摘要 提出了一种简单有效的基于提议的目标检测器,用于检测拥挤场景中高度重叠的实例。 方法的关键是让每个提案预测一组相关的实例,而不是之前基于提案框架中的单个实例。采用EMD损失、Set NMS等新技术,有效解决了检测高度重叠物体的困难。 表现: 在FPN-Res50基准上,检测器可以在挑战性的CrowdHuman数据集上获得4.9%的AP提升,在CityPersons数据集上获得1.0%的改进。此外,对于较少拥挤的数据集,如COCO,方法仍然可以实现适度的提升。一、介绍 经典基于提议的原创 2020-05-20 18:19:18 · 9071 阅读 · 15 评论 -
【目标检测】RetinaNet论文理解
一、介绍 在本文中: (1)研究为什么单阶段目标检测算法精度相对较低:因为在训练过程中会有极端的前-背景类不平衡的问题(类不平衡)。 (2)提出解决类不平衡的方法:通过重新构造标准交叉熵损失来解决这种类不平衡,这样它就可以降低分配给分类良好的示例的损失。新focal损失集中训练稀疏的一组难例,并防止大量简单的负例压倒训练期间的检测器。 (3)提出RetinaNet:当使用focal损失训练时,能够达到以前单级探测器的速度,同时超过所有现有的最先进的两阶段检测器的精度。 什么是类不平衡:原创 2020-05-27 19:20:40 · 2104 阅读 · 0 评论 -
【目标检测】Fast R-CNN论文理解
摘要 本文提出了一种基于区域卷积的快速目标检测方法(Fast R-CNN)。Fast R-CNN以之前的工作为基础,使用深度卷积网络对候选区域进行有效分类。 与之前的工作相比,Fast R-CNN采用了多项创新来提高训练和测试速度,同时也提高了检测精度。 1.Fast R-CNN使用更深的VGG16网络,训练时的速度是R-CNN的9倍,在测试时是 RCNN的213倍 2.在PASCAL VOC 2012上实现了更高的mAP。与SPPnet相比,Fast R-CNN训练VGG16 3×更快,测原创 2020-05-12 13:00:50 · 927 阅读 · 0 评论 -
【目标检测】Faster RCNN论文理解
摘要 当前最先进的目标检测网络: 依赖于区域建议算法来假设目标位置,例选择性搜索。SPPnet和Fast R-CNN等技术的进步缩短了检测网络的运行时间,但暴露了候选区域计算的瓶颈。 本文Faster RCNN: Faster RCNN=RPN+Fast RCNN。引入区域建议网络(RPN),它与检测网络(Fast RCNN)共享全图像卷积特性,从而实现了几乎‘免费’的区域建议。RPN是一个全卷积的网络,可以同时预测每个对象的位置边界和得分。对RPN进行端到端的训练,生成高质量的候选区域,F原创 2020-05-12 14:48:47 · 2001 阅读 · 0 评论 -
【目标检测】SSPNet论文理解
摘要 当前问题: 现有的深度卷积神经网络(CNNs)需要一个固定大小(如224×224)的输入图像输入。这种要求是可能会降低对任意大小/尺度的图像或子图像的识别精度。 空间金字塔池化层: 消除固定输入尺寸的要求,它可以生成固定长度的图像,而不管图像的大小和比例。空间金字塔池化层对物体变形有很强的鲁棒性。基于这些优点,SPP-net提高了各种CNN架构的准确性。 SPP-net在...原创 2020-05-10 11:07:46 · 1760 阅读 · 0 评论 -
【目标检测】RCNN论文理解
一、摘要 (1)过去:PASCAL VOC数据集上目标检测性能在过去几年中趋于稳定,没有很大的提升。并且这些性能最好的方法是复杂的集成系统,它通常将多个低级图像特征与高级上下文组合在一起,进行目标的检测。 (2)OverFeat:在RCNN之前OverFeat便在目标检测中应用了CNN,但是是一种基于CNN架构的滑动窗口检测器。效果同R-CNN相比相差很多。 (3)本文:提出一种简单、...原创 2020-05-07 14:17:32 · 918 阅读 · 0 评论 -
【目标检测】SSD 论文理解Single Shot Detector
摘要 SSD算法: 1.把边界框的输出空间离散化为一系列的默认框,这些默认框在每个特征图的像素位置上,有不同的长宽比和大小。 2.在预测时,网络会根据每个默认框中每个对象类别的存在程度生成分数,并对该框进行调整,以更好地匹配对象形状。 3.网络结合了来自不同分辨率的多个特征图的预测,以自然地处理不同大小的对象。 对比: 与需要区域建议的方法相比,SSD比较简单,因为它完全消...原创 2020-04-22 18:43:09 · 1700 阅读 · 1 评论 -
【目标检测】YOLOv2代码实现之TensorFlow
一.代码资源下载: 1.代码下载:https://github.com/KOD-Chen/YOLOv2-Tensorflow 2.模型下载:https://pan.baidu.com/s/1ZeT5HerjQxyUZ_L9d3X52w 3.打开下载的项目,并新建文件夹yolo2_model 4.将下载好的模型放入yolo2_model文件夹下。...原创 2020-04-21 15:21:39 · 1342 阅读 · 0 评论 -
【目标检测】YOLOv3论文理解
一.介绍 对YOLO做了一些改进。但也只是一些小的改变,最终使得网络表现更好。针对v1、v2的原理和技巧,v3变动不多。YOLO3主要的改进有:调整了网络结构;利用多尺度特征进行对象检测;对象分类用Logistic取代了softmax。二.处理2.1 边界框预测 (1)与YOLOv2相同:使用dimension clusters来找到先验anchor boxes,然后通过anchor ...原创 2020-05-13 13:15:32 · 1517 阅读 · 0 评论 -
【目标检测】YOLOv2论文理解
一、介绍 目标检测现状: 大多数检测方法仍然局限于一小部分对象。这是因为对象检测数据集是有限的。最常见的检测数据集包含成千上万的图像和几十到几百个标签,相比于分类数据集—拥有数以百万计的图像,其中有成千上万的类别。因此目标检测能检测的对象种类非常有限。 本文工作: 1.提出数据集组合方法:一种新的方法利用已经拥有的大量分类数据,扩展当前目标检测系统的对象检测范围。使用对象分类...原创 2020-04-18 12:12:43 · 1097 阅读 · 0 评论 -
【目标检测】YOLOv1代码实现之TensorFlow
一.代码资源下载: 1.代码下载: https://github.com/hizhangp/yolo_tensorflow 2.打开下载的项目,并新建文件夹data 3.下载pascal VOC 2007 数据集和 small_yolo.ckpt文件,将下载好的文件分别放入data文件夹下的pascal_voc和weight文件夹下。 数据集...原创 2020-04-17 13:14:03 · 3146 阅读 · 6 评论 -
【目标检测】YOLOv1论文理解
一、介绍1.1 YOLOv1和Faster RCNN系列的区别Faster R-CNN系列: 1)two-state目标检测算法; 2)重用分类器执行检测:该系列的算法,首先产生候选区域 通过一些搜索算法(例select search算法)或者区域建议网络(RPN网络)产生候选区域。...原创 2020-04-15 10:08:25 · 2682 阅读 · 0 评论 -
【目标检测】RoI pooling layer 感兴趣区域池化层
(2) RoI pooling 层的作用RoI pooling 层使用了一个最大池化,把一个任意尺寸的特征图转换成一个固定H*W大小的特征图。(2) RoI pooloing 层的工作原理RoI max pooling的工作原理是将h×w 特征图分割成H×W个大小近似的子窗口,然后将每个子窗口的值应用max-pooling,特征图经过这种运算能得到H×W的特征图输出。至此一个h×w的特征图转...原创 2020-04-06 12:39:29 · 2352 阅读 · 0 评论 -
【目标检测】候选区域介绍
1.为什么需要候选区域?目标检测这一计算机视觉任务不仅需要对图片中包含的目标进行分类—》输出类别标签的概率,还要对图片中的目标进行定位—》输出目标的边框(x,y,w,h)。因此为了定位目标在图片中的位置,我们需要先选择一些子区域,在这个子区域内运行算法,输出类别概率值最大的子区域就是该目标的位置。因此候选区域就是目标的初步估计位置,在算法的后续工作中,会对候选区域进行非极大值抑制(去除一部分候...原创 2020-04-01 20:27:36 · 4438 阅读 · 0 评论 -
【目标检测】SPP 空间金字塔池化层
1.为什么需要SSP层(1)不使用SSP后果在RCNN中,一张图片应用选择性搜索算法(之前博文介绍过)产生约2000个候选区域,这2000个候选区域可能都有着不同的尺寸、长宽比。RCNN网络中需要为每个候选区域用CNN网络提取特征,候选区域经过卷积层操作后需要送入到全连接层,但是全连接层需要设定固定的神经单元个数(例通常是4096)即来自最后一层卷积层的特征图尺寸一致。因为候选区域的大小各...原创 2020-04-04 18:27:53 · 4045 阅读 · 3 评论