注意力机制
文章平均质量分 93
不断进步的咸鱼
秃头女孩,不服输!
展开
-
【注意力机制】BAM: Bottleneck Attention Module论文理解
摘要 深度神经网络的最新进展是通过架构搜索来获得更强的表征能力。 瓶颈注意模块(BAM): 本研究关注深度神经网络中注意力机制的影响,提出了一个简单而有效的注意力模块,即瓶颈注意模块(BAM),可以与任何前馈卷积神经网络集成,沿着两个不同的路径(通道和空间)推断注意力映射。 将模块放在模型的每个瓶颈处(特征映射产生降采样),构建一个具有多个参数的分层注意,可以与任何前馈模型以端到端方式进行训练。 实验结果: 在CIFAR-100、ImageNet-1K、VOC 2007和MS COCO基原创 2021-06-14 15:57:51 · 13997 阅读 · 1 评论 -
【注意力机制】Squeeze-and-Excitation Networks论文理解
摘要 卷积操作: 卷积操作是卷积神经网络(CNNs)的核心构造块,它通过融合每一层局部接受域(感受野)内的空间和信道信息使网络构建信息特征。大量先前的研究已经调查了这种关系的空间成分,试图通过在其特征层次中提高空间编码的质量来提升CNN的表征能力。 本文SE模块: 将重点放在通道关系上提出一个新的架构单元——“Squeeze-and-Excitation”(SE)块。通过显式地建模通道之间的相互依赖,自适应地重新校准信道特征响应。 实验结果: (1)SE模块可以堆叠在一起,形成SEN原创 2021-04-11 16:16:11 · 6163 阅读 · 0 评论 -
【注意力机制】CBAM: Convolutional Block Attention Module
文章目录摘要1 介绍2 相关工作3 卷积块注意模块(CBAM)4 实验4.1 消融研究4.2 在ImageNet-1K的图像分类4.3 使用Grad-CAM进行网络可视化4.4 MS COCO目标检测4.5 VOC 2007目标检测5 结论摘要 CBAM: 本文提出卷积块注意模块(CBAM)——前馈卷积神经网络的一种简单而有效的注意模块。给定一个中间 feature map,CBAM模块沿着通道和空间两个维度依次推导 attention map,然后将 attention map 乘以 输入fe原创 2021-04-07 21:28:15 · 10862 阅读 · 1 评论