稀疏数组
目录:
1.简介
2.代码实现
3.总结思考
=======>
内容部分
1.简介
所谓稀疏数组就是当数组中大部分的内容值都未被使用(或都为零),在数组中仅有少部分的空间使用。因此造成内存空间的浪费,为了节省内存空间,并且不影响数组中原有的内容值,我们可以使用稀疏数组去压缩数据。
举个栗子:比如说围棋棋盘,五五子棋棋盘,需要存储下棋顺序和棋盘棋子的数据;大多数的棋盘都不会占用很多,所以需要一种方法压缩存储时所占用的资源;
简介稀疏数组的结构
2.代码实现
public static void main(String[] args) {
//将二维数组转为稀疏数组
System.out.println("初始化二维数组");
int[][] chress = new int[11][11];
chress[0][1] = 1;
chress[0][2] = 2;
chress[0][3] = 3;
for (int i = 0; i < chress.length; i++) {
for (int j = 0; j < chress[i].length; j++) {
System.out.print(chress[i][j] + "\t");
}
System.out.println();
}
//如何创建稀疏数组
//先获取未知数组的数据条数
int count = 0;
for (int i = 0; i < chress.length; i++) {
for (int j = 0; j < chress[i].length; j++) {
if (chress[i][j] != 0) {
count++;
}
}
}
int[][] sparseArray = new int[count + 1][3];
//再将数组存入稀疏数组中
//第一行存储整个二维数组的内容
sparseArray[0][0] = chress.length;
sparseArray[0][1] = chress[0].length;
sparseArray[0][2] = count;
int n = 0;
for (int i = 0; i < chress.length; i++) {
for (int j = 0; j < chress[i].length; j++) {
if (chress[i][j] != 0) {
n++;
sparseArray[n][0] = i;
sparseArray[n][1] = j;
sparseArray[n][2] = chress[i][j];
}
}
}
//输出稀疏数组
System.out.println("输出稀疏数组");
for (int i = 0; i < sparseArray.length; i++) {
for (int j = 0; j < sparseArray[i].length; j++) {
System.out.print(sparseArray[i][j] + " ");
}
System.out.println();
}
//将稀疏数组还原为二维数组
System.out.println("稀疏数组转为二维数组");
int[][] ayyay2 = new int[sparseArray[0][0]][sparseArray[0][1]];
for (int i = 1; i < sparseArray.length; i++) {
ayyay2[sparseArray[i][0]][sparseArray[i][1]] = sparseArray[i][2];
}
System.out.println("输出转化后的二维数组");
for (int i = 0; i < ayyay2.length; i++) {
for (int j = 0; j < ayyay2[i].length; j++) {
System.out.print(ayyay2[i][j] + "\t");
}
System.out.println();
}
}
3.总结
3.1稀疏数组有个条件,那就是大部分数组内容未被使用,或者说是大部分内容都是0或者默认值,解释:如果大部分内容都是使用过的,那么转为稀疏数组将更加占用资源;
3.2.1具体我将用一点浅薄的数学知识来表达:假设棋盘x*x,完整存储棋盘和棋子将占用x*x的空间;如果使用稀疏数组,将是棋子的个数N*3+3(第一行数据),即可列一个表达式X*X =3(n+1),此表达式可判断使用稀疏数组存储和使用二维数组存储所占的资源到底谁更大;
3.2.2 如果N+1>X*X/3,那么使用稀疏数组将更加占空间,反之N+1<X*X/3,那么使用稀疏数组存储将节省空间。
3.3猜想:三维数组是否同样可以使用4列的稀疏数组进行存储?