最小生成树(Prim算法)

最小生成树(Kruskal和Prim算法)

关于图的几个概念定义:

  • 连通图:在无向图中,若任意两个顶点vi与vj都有路径相通,则称该无向图为连通图。
  • 强连通图:在有向图中,若任意两个顶点vi与vj都有路径相通,则称该有向图为强连通图。
  • 连通网:在连通图中,若图的边具有一定的意义,每一条边都对应着一个数,称为权;权代表着连接连个顶点的代价,称这种连通图叫做连通网。
  • 生成树:一个连通图的生成树是指一个连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边。一颗有n个顶点的生成树有且仅有n-1条边,如果生成树中再添加一条边,则必定成环。
  • 最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树。 
    这里写图片描述

下面介绍两种求最小生成树算法 Kruskal在另一篇博客。

2.Prim算法

此算法可以称为“加点法”,每次迭代选择代价最小的边对应的点,加入到最小生成树中。算法从某一个顶点s开始,逐渐长大覆盖整个连通网的所有顶点。

  1. 设图G顶点集合为U,首先任意选择图G中的一点作为起始点a,将该点加入集合V。
  2. 再从集合U-V中找到另一点b使得点b到V中任意一点的权值最小,此时将b点也加入集合V;
  3. 以此类推,现在的集合V={a,b},再从集合U-V中找到另一点c使得点c到V中任意一点的权值最小,此时将c点加入集合V,直至所有顶点全部被加入V,此时就构建出了一颗MST(Minimum Spanning Tree,最小生成树)。
  4. 因为有N个顶点,所以该MST就有N-1条边,每一次向集合V中加入一个点,就意味着找到一条MST的边。

  

解题思路:

  1. 建立两个数组:lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说明以i为终点的边的最小权值=0,也就是表示i点加入了MST;adjvex[i]:表示保存相关顶点的下标,例如{0,0,1,2,3,0}代表下标为0的数组没有联系,下标2的v2与下标1的v1有联系,下标3的v3与下标为2的v2有联系

  2. 假设V1是起始点,进行初始化(∞代表无限大,即无通路)                                                                                     lowcost[2]=6,lowcost[3]=1,lowcost[4]=5,lowcost[5]=∞,lowcost[6]=∞,                                                                   mst[2]=1,mst[3]=1,mst[4]=1,mst[5]=1,mst[6]=1,(所有点默认起点是V1)

  3. 明显看出,以V3为终点的边的权值最小=1,把v3加入集合v中即v={1,3}                                                                                因为点V3的加入,需要更新lowcost数组和mst数组:                                                                                                lowcost[2]=5,lowcost[3]=0,lowcost[4]=5,lowcost[5]=6,lowcost[6]=4                                                                      mst[2]=3,mst[3]=0,mst[4]=1,mst[5]=3,mst[6]=3

  4. 明显看出,以V6为终点的边的权值最小=4,把v6加入集合v中即v={1,3,6}                                                                         因为点V6的加入,需要更新lowcost数组和mst数组:                                                                                                      lowcost[2]=5,lowcost[3]=0lowcost[4]=2,lowcost[5]=6,lowcost[6]=0                                                                    mst[2]=3,mst[3]=0,mst[4]=6,mst[5]=3,mst[6]=0

  5. 明显看出,以V4为终点的边的权值最小=2,把v4加入集合v中即v={1,3,6,4}                                                                    因为点V4的加入,需要更新lowcost数组和mst数组: 

    lowcost[2]=5lowcost[3]=0,lowcost[4]=0,lowcost[5]=6,lowcost[6]=0

    mst[2]=3,mst[3]=0,mst[4]=0,mst[5]=3,mst[6]=0

  6. 明显看出,以V2为终点的边的权值最小=5,把v2加入集合v中即v={1,3,6,4,2}                                                                因为点V2的加入,需要更新lowcost数组和mst数组:

    lowcost[2]=0,lowcost[3]=0,lowcost[4]=0lowcost[5]=3lowcost[6]=0

    mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=2,mst[6]=0

  7. 明显看出,以V5为终点的边的权值最小=3,把v5加入集合v中即v={1,3,6,4,2,5}                                                          因为点V5的加入,需要更新lowcost数组和mst数组:

    lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=0,lowcost[6]=0

    mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=0,mst[6]=0

  8. 至此,MST构建成功


3.完整代码

运行结果:

#include<iostream>
using  namespace std;

#define MAX 100
#define MAXCOST 0x7fffffff

int graph[MAX][MAX];

int prim(int graph[][MAX], int n)
{
	int lowcost[MAX];//保存相关顶点之间的权值
	int adjvex[MAX];//保存相关顶点的下标
	int i, j, min, minid, sum = 0;
	adjvex[1] = 0;//初始化第一个权值为0,即v0已经加入最小生成树
	//lowcost的值为0,在这里就是此下标的顶点已经加入最小生成树
	for (i = 2; i <= n; i++)
	{
		lowcost[i] = graph[1][i];//将v1顶点与其他边的权值存入数组lowcost
		adjvex[i] = 1;//初始化都为v1的下标
	}
	for (i = 2; i <= n; i++)
	{
		min = MAXCOST;//初始化最小权值为无穷
		minid = 0;
		for (j = 2; j <= n; j++)
		{
			if (lowcost[j] < min && lowcost[j] != 0)
			{
				min = lowcost[j];
				minid = j;//最小下标 第一次j=3
			}
		}
		cout << "V" <<adjvex[minid] << "-V" << minid << "=" << min << endl;
		sum += min;//最小生成树最小权值的和
		lowcost[minid] = 0;//将lowcost[3]=0即存入最小生成树
		for (j = 2; j <= n; j++)
		{
			if (graph[minid][j] < lowcost[j])//graph[3][j] lowcost[j]比较
			{
			    //若下标为minid顶点各边权值小于之前这些顶点未被加入最小生成树的权值
				lowcost[j] = graph[minid][j];//更新使得lowcost最小
				adjvex[j] = minid;
			}
		}
	}
	return sum;
}

int main()
{
	int i, j, k, m, n;
	int  cost;
	cin >> m >> n;//m=顶点的个数,n=边的个数
	//初始化图G
	for (i = 1; i <= m; i++)
	{
		for (j = 1; j <= m; j++)
		{
			graph[i][j] = MAXCOST;
		}
	}
	//构建图G
	for (k = 1; k <= n; k++)
	{
		cin >> i >> j >> cost;
		graph[i][j] = cost;
		graph[j][i] = cost;
	}
	//求解最小生成树
	cost = prim(graph, m);
	//输出最小权值和
	cout << "最小权值和=" << cost << endl;
	return 0;
}

 


 

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值