深度优先搜索
属于图算法的一种,英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次;
深度优先遍历图的思想是,从图中某顶点v出发:
(1)访问顶点v;
(2)依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;
(3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。
例1:对于以下一个树:
1
2 3
4 5 6
深度优先的策略是1->2->4->退后一步->5->退后一步->退后一步->3->6->结束
而广度优先则是第一次:1->2->3第2次:4->5->6
例2:给你一个迷宫 走遍
右图实线即遍历思路
一、邻接矩阵及邻接表
1.如果图是用邻接矩阵存储
typedef int boolean; /*boolean是布尔类型,其值是TRUE false*/
boolean visited[MAX];
/*邻接矩阵的深度优先递归算法*/
void DFS(MGraph G,int i)
{
int j;
visited[i]=TRUE;
printf("%c ",G.vexs[i]);
for(j=0;j<G.numVertexes;j++)
{
if(G.arc[i][j]==1&&!visited[j])
DFS(G,j);
}
}
/*邻接矩阵的深度遍历算法*/
void DFSTraverse(MGraph G)
{
int i;
for(i=0;i<G.numVertexes;i++)
visited[i]=FALSE;//初始化 都未被标记
for(i=0;i<G.numVertexes;i++)
{
if(!visited[j])//未被标记的调用DFS
DFS(G,i);
}
}
2.如果图是用邻接表存储
/*邻接表的深度优先递归算法*/
void DFS(GraphAdjList GL,int i)
{
EdgeNode *p;
visited[i]=TRUE;
printf("%c ",GL->adjList[i].data);
p=GL->adjList[i].firstedge;
while(p)
{
if(!visited[p->adjvex])
{
DFS(GL,p->adjvex);
p=p->next;
}
}
}
/*邻接表的深度遍历算法*/
void DFSTraverse(GraphAdjList GL)
{
int i;
for(i=0;i<GL->numVertexes;i++)
visited[i]=FALSE;//初始化 都未被标记
for(i=0;i<GL->numVertexes;i++)
{
if(!visited[j])//未被标记的调用DFS
DFS(G,i);
}
}
二、栈和递归思路
1. 使用栈来实现。相关算法实现总结为:
(1) 将初始节点压栈。
(2) While(栈非空) {
(3) 取出栈顶点,暂时存储这个节点node_t信息。
(4) 访问该节点,并且标示已访问。
(5) 将栈顶元素出站。
(6) For(遍历node_t的相邻的未访问过的节点){
(7) 将其入栈。
}
}
2. 使用递归来实现。相关算法实现总结为:
(1) DFS(初始节点)
(2) Function DFS(一个节点) {
(3) 访问该节点,并且标示已访问。
(4) For(遍历该节点的相邻的未访问过的节点) {
(5) DFS(这个邻接节点)。
}
}