问题
有六顶帽子:三顶黑帽子,三顶白帽子。A、B、C三人从黑帽子和白帽子中选择一个戴上。这三人每人都只能看见其他两人头上的帽子,但看不见自己头上的帽子,并且也不知道剩余帽子的颜色。不允许三个人同时戴黑帽子 。
问A:"你戴的是什么颜色的帽子?"
A说:"不知道。"
问B:"你戴的是什么颜色的帽子?"
B想了想之后,也说:"不知道。"
最后问C。C回答说:"我知道我戴的帽子是什么颜色了。"
分析:
首先问A,A猜不出自己帽子的颜色,那么B和C两人肯定不是同时戴黑帽子。因为根据规则,如果B C两人同时戴黑帽子,那么A肯定知道自己戴的白帽子。
下面,用0表示白帽子,1表示黑帽子,那么此时B和C两人的情况有三种:00 、01、 10。
然后问B,B也猜不出自己的。此时就可以将01这种情况排除,因为如果是01这种情况,B是能够猜出自己帽子的颜色的。因为B知道C帽子的颜色是1,并且自己不可能是1(因为A猜不出),所以可以确认自己是0.。
到了这里,只剩下00 和10两种情况了,无论哪种情况,C的颜色都是0。因此C能够猜出自己的颜色。