(对于理解向量组线性表出很有帮助,本人就是这么理解过来的)
向量组:即通过秩的数量构造多维的空间系。
一个向量组的秩=空间的维度。
向量组中的单个有用向量(其余向量不可以表示的独立个体,专业名词忘了)表示一维。
向量组之间的相互表示:即空间维度的转化。
能够线性表示,则说明两个空间维度是包含于的关系。
例如A向量组(a1,a2,a3,... ...ai)可以由B向量组(b1,b2,b3,...... bj)线性表示(a1,b1,都是向量,i,j大小未知)
我们可以理解为A向量组构成的空间,一定是B向量组构造空间的子集(或者相同空间),因为只有在同维度的空间体系内,两个空间才可以相互表示,简单点说就像线和线比较,面和面比较。线和面是无法比较的(线无法表示面),但是面是二维空间(不共线的两个向量),组成面的两个线是可以表示表示线的。这样说比较啰嗦,但是想明白对于理解向量组这一块的定理是很有帮助的。
回到主题:A向量组可以由B向量组线性表示,说明A的空间体系的维度一定小于等于B的空间体系的维度。这就是r(A)<=r(B)的原因。其余定理也可以根据这个思想推理。