线代 向量组 本质理解

(对于理解向量组线性表出很有帮助,本人就是这么理解过来的)

向量组:即通过秩的数量构造多维的空间系。

一个向量组的秩=空间的维度。

向量组中的单个有用向量(其余向量不可以表示的独立个体,专业名词忘了)表示一维。

向量组之间的相互表示:即空间维度的转化。

能够线性表示,则说明两个空间维度是包含于的关系。

例如A向量组(a1,a2,a3,... ...ai)可以由B向量组(b1,b2,b3,...... bj)线性表示(a1,b1,都是向量,i,j大小未知)

我们可以理解为A向量组构成的空间,一定是B向量组构造空间的子集(或者相同空间),因为只有在同维度的空间体系内,两个空间才可以相互表示,简单点说就像线和线比较,面和面比较。线和面是无法比较的(线无法表示面),但是面是二维空间(不共线的两个向量),组成面的两个线是可以表示表示线的。这样说比较啰嗦,但是想明白对于理解向量组这一块的定理是很有帮助的。

回到主题:A向量组可以由B向量组线性表示,说明A的空间体系的维度一定小于等于B的空间体系的维度。这就是r(A)<=r(B)的原因。其余定理也可以根据这个思想推理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值