MLP进行MNIST分类调参技巧总结

《模式识别》课程实验考试,要求自主选择分类方法,使用20000个手写数字样本训练区分10个类别的分类器,并预测20000个测试样本的标签。与一般的MNIST手写数字识别不同,本实验给定的数据是老师经过PCA降维后的数据,五组数据特征维数分别为81-85。

因此基本断绝了直接使用CNN的念想,实验中主要使用MLP,并使用了一些调参(炼丹)技巧,最终准确率达到98.03%,在此总结记录!

主要方法:对数据集进行4:1的训练集+验证集和测试集拆分,使用五层MLP神经网络,在训练集+验证集数据上进行5折交叉验证,最终5个模型投票给出测试集上的结果。

固定随机种子

为了保证调参过程中的控制变量,避免数据拆分不同时的引入的随机影响,在最开始需要固定随机种子,包括 random/numpy/pytorch ,代码如下

seed = 99
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)

MLP神经网络调参

  • 参数初始化

    • Uniform 均匀分布初始化

      w = np.random.uniform(low=-scale, high=scale, size=[n_in, n_out])
      
    • Xavier 初始化,适用于 tanh sigmoid 激活函数

  • 数据预处理

    • 训练集和测试集统一使用训练集的方差、均值进行归一化
    X -= np.mean(X, axis=0)
    X /= np.std(X, axis=0)
    
  • 优化器

    • SGD 效果好于 Adam

    • 设置 momentum 和 weight_decay,后者对于过拟合问题效果不是很明显

    • 如果N个epoch内,正确率不变则降低学习率

      optimizer = torch.optim.SGD(model.parameters(),
                                  lr=0.1,
                                  momentum=0.75,
                                  weight_decay=3e-4)
      
      def adjust_learning_rate(opt, num_adjust):
        """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
        lr = 0.1 * (0.1**num_adjust)
        for param_group in opt.param_groups:
          param_group['lr'] = lr
      
  • dropout,0.5 上下浮动设置

  • 激活函数,使用 ReLU 效果好于 Sigmoid 和 Tanh

  • Batch Normalization,效果有明显提升

  • MLP网络层最佳顺序 Linear -> Batch Norm -> Activation -> Droput -> Linear

nn.Sequential(nn.Linear(84, 1024), nn.BatchNorm1d(1024),
                                 nn.ReLU(), nn.Dropout(0.5),
                                 nn.Linear(1024, 512), nn.BatchNorm1d(512),
                                 nn.ReLU(), nn.Dropout(0.5),
                                 nn.Linear(512, 256), nn.BatchNorm1d(256),
                                 nn.ReLU(), nn.Dropout(0.5),
                                 nn.Linear(256, 128), nn.BatchNorm1d(128),
                                 nn.ReLU(), nn.Dropout(0.5),
                                 nn.Linear(128, 10), nn.LogSoftmax(dim=1))

数据集划分及K折交叉验证

主要步骤

  • 使用 sklearn train_test_split 进行基本数据集切分,训练集+验证集:测试集大约4:1
  • 使用 sklearn KFold 进行5折交叉验证,分别保存开发集上的最优模型
  • 最后使用得到的5个模型在测试集上进行预测投票给出最终标签

注意点

  • 调参过程中测试集不应太小,否则偏差较大;过程中可以多划分一些进行调参,最终模型可以不用测试集,用所有数据进行交叉验证

  • 关于交叉验证中 K 的选择,一般K=5或10,极端情况下可使用留一法(即每次使用一个样本进行验证);根据先前的相关研究,取值情况可参考公式(其中n是样本数,d是特征维数)
    K ≈ log ⁡ ( n ) n / K > 3 d K \approx \log(n) \\ n/K > 3d Klog(n)n/K>3d

    本次实验中取K=10时效果不佳,最终取K等于5

    log(20000) = 5

    20000/5 = 4000 > 3*84

写在后面

总的来说,本次实验准备比较匆忙,仅花了一晚上来调参,很多地方并没有时间进行完备而科学的测试,最终结果倒是差强人意,貌似组内第1、2的样子,但比预期还是稍低一些。理论上如果能进行更细致科学的调参,还是有很大进步空间的。

参考链接

  • 6
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MLP-MNIST是指使用多层感知机(Multilayer Perceptron,简称MLP)模型对MNIST数据集进行分类的任务。MNIST数据集是一个常用于机器学习领域的手写数字识别数据集。它包含了60,000个训练样本和10,000个测试样本,每个样本都是一个28x28的灰度图像,图像上的数字标签表示该图像对应的数字。 MLP是一种经典的前馈神经网络模型,它由多个全连接层组成,每个层都包含了多个神经元。该模型可以通过学习来建立输入图像与对应数字之间的映射关系,从而实现对手写数字的分类任务。 要进行MLP-MNIST数据集的分类任务,可以按照以下步骤进行: 1. 读取数据集:首先,需要将MNIST数据集加载到程序中,可以使用适当的数据读取函数,如TensorFlow中的tf.keras.datasets模块中的load_data()函数。 2. 数据预处理:对于MLP模型,通常需要将图像数据进行平铺(flatten)操作,将二维的图像数据转换为一维的向量作为模型的输入。同时,还需要对图像数据进行归一化处理,将像素值缩放到0到1之间。 3. 初始化模型参数:根据需要选择合适的MLP模型结构,并对模型的参数进行初始化,如权重和偏置。 4. 定义激活函数MLP模型中的每个神经元通常都会使用激活函数对其输出进行非线性变换,常见的激活函数包括ReLU、sigmoid和tanh等。 5. 防止过拟合:在MLP模型中,为了防止过拟合现象的发生,可以采用一些正则化技术,如权重衰减(weight decay)。 6. 训练模型:使用训练集对MLP模型进行训练,通过反向传播算法不断优化模型参数,使其能够更好地拟合训练数据。 7. 模型评估:使用测试集对训练好的模型进行评估,计算分类准确率等指标,以评估模型的性能。 综上所述,MLP-MNIST数据集是指使用多层感知机模型对MNIST数据集进行分类任务的过程。通过适当的数据预处理、模型参数初始化、激活函数定义和防止过拟合等步骤,可以构建出一个能够对手写数字进行准确分类MLP模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值