java排序算法(五)------归并排序

归并排序: 是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。

在这里插入图片描述
合并相邻有序子序列
在这里插入图片描述
代码实现:

public class MergeSort {

    public static void sort(int[] arr) {
        int[] temp = new int[arr.length];
        sort(arr,0,arr.length - 1,temp);
    }

    public static void sort(int[] arr, int left, int right, int[] temp) {
        if (left < right) {
     	   // 找出中间索引  
            int mid = (right + left)/2;
            // 对左边数组进行递归   
            sort(arr,left,mid,temp);
            // 对右边数组进行递归 
            sort(arr,mid+1,right,temp);
            // 合并  
            merge(arr, left, mid, right, temp);
        }
    }

/**  
	     * 将两个数组进行归并,归并前面2个数组已有序,归并后依然有序  
	     *   
	     * @param arr  数组对象  
	     * @param left  左数组的第一个元素的索引  
	     * @param mid 左数组的最后一个元素的索引,center+1是右数组第一个元素的索引  
	     * @param right  右数组最后一个元素的索引  
	     */   
    private static void merge(int[] arr, int left, int mid, int right, int[] temp) {
        int i = left;       //右指针
        int j = mid + 1;    //左指针
        int t = 0;          //临时数组指针
        while (i <= mid && j <= right) {
        // 从两个数组中取出最小的放入临时数组  
            if (arr[i] <= arr[j]) {
                temp[t++] = arr[i++];
            }else{
                temp[t++] = arr[j++];
            }
        }
        // 剩余部分依次放入临时数组(实际上两个while只会执行其中一个) 
        while (i <= mid) {
            temp[t++] = arr[i++];
        }
        while (j <= right) {
            temp[t++] = arr[j++];
        }
        t = 0;
        // 将临时数组中的内容拷贝回原数组中    
	        // (原left-right范围的内容被复制回原数组) 
        while(left <= right){
            arr[left++] = temp[t++];
        }

    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Younger_zeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值