归并排序: 是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。
合并相邻有序子序列
代码实现:
public class MergeSort {
public static void sort(int[] arr) {
int[] temp = new int[arr.length];
sort(arr,0,arr.length - 1,temp);
}
public static void sort(int[] arr, int left, int right, int[] temp) {
if (left < right) {
// 找出中间索引
int mid = (right + left)/2;
// 对左边数组进行递归
sort(arr,left,mid,temp);
// 对右边数组进行递归
sort(arr,mid+1,right,temp);
// 合并
merge(arr, left, mid, right, temp);
}
}
/**
* 将两个数组进行归并,归并前面2个数组已有序,归并后依然有序
*
* @param arr 数组对象
* @param left 左数组的第一个元素的索引
* @param mid 左数组的最后一个元素的索引,center+1是右数组第一个元素的索引
* @param right 右数组最后一个元素的索引
*/
private static void merge(int[] arr, int left, int mid, int right, int[] temp) {
int i = left; //右指针
int j = mid + 1; //左指针
int t = 0; //临时数组指针
while (i <= mid && j <= right) {
// 从两个数组中取出最小的放入临时数组
if (arr[i] <= arr[j]) {
temp[t++] = arr[i++];
}else{
temp[t++] = arr[j++];
}
}
// 剩余部分依次放入临时数组(实际上两个while只会执行其中一个)
while (i <= mid) {
temp[t++] = arr[i++];
}
while (j <= right) {
temp[t++] = arr[j++];
}
t = 0;
// 将临时数组中的内容拷贝回原数组中
// (原left-right范围的内容被复制回原数组)
while(left <= right){
arr[left++] = temp[t++];
}
}
}