地下水运动方程的解析解(一维潜水)

一维潜水运动方程的水头解(积分变换)

1. 概念模型

2. 初始问题

K ∂ ∂ x ( h ∂ h ∂ x ) + I ( t ) = S y ∂ h ∂ t h ( x , t ) = h 0 , t = 0 h ( x , t ) = h b , x = 0 ∂ h ∂ x = 0 , x = L K\frac{\partial }{\partial x}(h\frac{\partial h}{\partial x})+I(t)=S_y\frac{\partial h}{\partial t}\\ h(x,t)=h_0,t=0\\ h(x,t)=h_b,x=0\\ \frac{\partial h}{\partial x}=0,x=L Kx(hxh)+I(t)=Sythh(x,t)=h0,t=0h(x,t)=hb,x=0xh=0,x=L

3. 线性化后问题:

∂ 2 h 2 ∂ x 2 + 2 I ( t ) K = 1 D ∂ h 2 ∂ t h 2 ( x , t ) = h 0 2 , t = 0 h 2 ( x , t ) = h b 2 , x = 0 ∂ 2 h 2 ∂ x 2 = 0 , x = L \frac{\partial^2h^2}{\partial x^2}+\frac{2I(t)}{K}=\frac{1}{D}\frac{\partial h^2}{\partial t}\\ h^2(x,t)=h_0^2,t=0\\ h^2(x,t)=h_b^2,x=0\\ \frac{\partial^2h^2}{\partial x^2}=0,x=L x22h2+K2I(t)=D1th2h2(x,t)=h02,t=0h2(x,t)=hb2,x=0x22h2=0,x=L
h 2 记为 H h^2记为H h2记为H,则
∂ 2 H ∂ x 2 + W = 1 D ∂ H ∂ t H ( x , t ) = H 0 , t = 0 H ( x , t ) = 0 , x = 0 ∂ 2 H ∂ x 2 = 0 , x = L \frac{\partial^2 H}{\partial x^2}+W=\frac{1}{D}\frac{\partial H}{\partial t}\\ H(x,t)=H_0,t=0\\ H(x,t)=0,x=0\\ \frac{\partial^2H}{\partial x^2}=0,x=L x22H+W=D1tHH(x,t)=H0,t=0H(x,t)=0,x=0x22H=0,x=L
where,
W ( t ) = W i , t i − 1 ≤ t < t i , i = 1 , 2 , 3 … … , t 0 = 0 W(t)=W_i,\quad t_{i-1}\le t<t_i,i=1,2,3…… ,\quad t_0=0 W(t)=Wi,ti1t<ti,i=1,2,3……,t0=0
上式即为有限区域内热传导的一维均质边值问题(积分变换法)

解:

定义水头函数 H ( X , t ) H(X,t) H(X,t)的积分变换和逆变化形式为
H ( x , t ) = ∑ m = 1 ∞ K ( β m , x )   ˙ H ˉ ( β m , t ) H(x,t)=\sum_{m=1}^{\infty}{K{(\beta_m,x)}\dot\ \bar{H}(\beta_m,t)} H(x,t)=m=1K(βm,x) ˙Hˉ(βm,t)

H ˉ ( β m , t ) = ∫ 0 L K ( β m , x )   ˙ H ( x , t ) d x \bar{H}(\beta_m,t)=\int_{0}^{L}{K(\beta_m,x)\dot \ H(x,t)}dx Hˉ(βm,t)=0LK(βm,x) ˙H(x,t)dx

左右两边积分得:
∫ 0 L K ( β m , x )   ˙ [ ∂ 2 H ( x , t ) ∂ x 2 + W ( t ) ] d x = 1 D ∫ 0 L K ( β m , x )   ˙ ∂ H ( x , t ) ∂ t d x \int_{0}^{L}{K(\beta_m,x)\dot \ [\frac{\partial^2{H(x,t)}}{\partial{x^2}}}+W(t)]dx=\frac{1}{D}\int_{0}^{L}{K(\beta_m,x)\dot \ \frac{\partial{H(x,t)}}{\partial{t}}dx} 0LK(βm,x) ˙[x22H(x,t)+W(t)]dx=D10LK(βm,x) ˙tH(x,t)dx
将积分变换带入(1)式得:
∫ 0 L K ( β m , x )   ˙ ∂ 2 H ( x , t ) ∂ x 2 d x + ∫ 0 L K ( β m , x )   ˙ W ( t ) d x = 1 D ∫ 0 L K ( β m , x )

  • 7
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小孟的CDN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值