文章目录
一维潜水运动方程的水头解(积分变换)
1. 概念模型
2. 初始问题
K ∂ ∂ x ( h ∂ h ∂ x ) + I ( t ) = S y ∂ h ∂ t h ( x , t ) = h 0 , t = 0 h ( x , t ) = h b , x = 0 ∂ h ∂ x = 0 , x = L K\frac{\partial }{\partial x}(h\frac{\partial h}{\partial x})+I(t)=S_y\frac{\partial h}{\partial t}\\ h(x,t)=h_0,t=0\\ h(x,t)=h_b,x=0\\ \frac{\partial h}{\partial x}=0,x=L K∂x∂(h∂x∂h)+I(t)=Sy∂t∂hh(x,t)=h0,t=0h(x,t)=hb,x=0∂x∂h=0,x=L
3. 线性化后问题:
∂ 2 h 2 ∂ x 2 + 2 I ( t ) K = 1 D ∂ h 2 ∂ t h 2 ( x , t ) = h 0 2 , t = 0 h 2 ( x , t ) = h b 2 , x = 0 ∂ 2 h 2 ∂ x 2 = 0 , x = L \frac{\partial^2h^2}{\partial x^2}+\frac{2I(t)}{K}=\frac{1}{D}\frac{\partial h^2}{\partial t}\\ h^2(x,t)=h_0^2,t=0\\ h^2(x,t)=h_b^2,x=0\\ \frac{\partial^2h^2}{\partial x^2}=0,x=L ∂x2∂2h2+K2I(t)=D1∂t∂h2h2(x,t)=h02,t=0h2(x,t)=hb2,x=0∂x2∂2h2=0,x=L
将 h 2 记为 H h^2记为H h2记为H,则
∂ 2 H ∂ x 2 + W = 1 D ∂ H ∂ t H ( x , t ) = H 0 , t = 0 H ( x , t ) = 0 , x = 0 ∂ 2 H ∂ x 2 = 0 , x = L \frac{\partial^2 H}{\partial x^2}+W=\frac{1}{D}\frac{\partial H}{\partial t}\\ H(x,t)=H_0,t=0\\ H(x,t)=0,x=0\\ \frac{\partial^2H}{\partial x^2}=0,x=L ∂x2∂2H+W=D1∂t∂HH(x,t)=H0,t=0H(x,t)=0,x=0∂x2∂2H=0,x=L
where,
W ( t ) = W i , t i − 1 ≤ t < t i , i = 1 , 2 , 3 … … , t 0 = 0 W(t)=W_i,\quad t_{i-1}\le t<t_i,i=1,2,3…… ,\quad t_0=0 W(t)=Wi,ti−1≤t<ti,i=1,2,3……,t0=0
上式即为有限区域内热传导的一维均质边值问题(积分变换法)
解:
定义水头函数 H ( X , t ) H(X,t) H(X,t)的积分变换和逆变化形式为
H ( x , t ) = ∑ m = 1 ∞ K ( β m , x ) ˙ H ˉ ( β m , t ) H(x,t)=\sum_{m=1}^{\infty}{K{(\beta_m,x)}\dot\ \bar{H}(\beta_m,t)} H(x,t)=m=1∑∞K(βm,x) ˙Hˉ(βm,t)
H ˉ ( β m , t ) = ∫ 0 L K ( β m , x ) ˙ H ( x , t ) d x \bar{H}(\beta_m,t)=\int_{0}^{L}{K(\beta_m,x)\dot \ H(x,t)}dx Hˉ(βm,t)=∫0LK(βm,x) ˙H(x,t)dx
左右两边积分得:
∫ 0 L K ( β m , x ) ˙ [ ∂ 2 H ( x , t ) ∂ x 2 + W ( t ) ] d x = 1 D ∫ 0 L K ( β m , x ) ˙ ∂ H ( x , t ) ∂ t d x \int_{0}^{L}{K(\beta_m,x)\dot \ [\frac{\partial^2{H(x,t)}}{\partial{x^2}}}+W(t)]dx=\frac{1}{D}\int_{0}^{L}{K(\beta_m,x)\dot \ \frac{\partial{H(x,t)}}{\partial{t}}dx} ∫0LK(βm,x) ˙[∂x2∂2H(x,t)+W(t)]dx=D1∫0LK(βm,x) ˙∂t∂H(x,t)dx
将积分变换带入(1)式得:
∫ 0 L K ( β m , x ) ˙ ∂ 2 H ( x , t ) ∂ x 2 d x + ∫ 0 L K ( β m , x ) ˙ W ( t ) d x = 1 D ∫ 0 L K ( β m , x