方程离散
中心差分格式主要的一个不足之处就是它不能辨识流动的方向。在中心差分格式中,左边界的输运量 ϕ \phi ϕ的值总是由 ϕ P \phi_P ϕP和 ϕ W \phi_W ϕW共同决定。然而,强对流(从左向右流动)的流场中这种处理方式是不合理的,因为左边界处的 ϕ \phi ϕ值受到上游节点W的影响要远大于下游节点E的影响。为了克服中心差分格式不具有对流输运特性的缺点,人们提出了迎风格式。迎风格式在确定边界值时会考虑到流动方向的影响,边界处的 ϕ \phi ϕ值就直接用上游节点的值来近似,比如在左边界处就是 ϕ w = ϕ W \phi_w=\phi_W ϕw=ϕW(从左向右流动时), ϕ w = ϕ W \phi_w=\phi_W ϕw=ϕW(从右向左流动时),如下所示。
考虑 一维对流扩散问题的离散 中推导出的公式 ( 9 ) (9) (9),
F e ϕ e − F w ϕ w = D e ( ϕ E − ϕ P ) − D w ( ϕ P − ϕ W ) (1) F_e \phi_e - F_w \phi_w = D_e(\phi_E-\phi_P)-D_w(\phi_P-\phi_W) \tag{1} Feϕe−Fwϕw=De(ϕE−ϕP)−Dw(ϕP−ϕW)(1)
定义向右流动为正向,向左流动为负向。则当流动为正向时有,
u w > 0 , u e > 0 ⇒ F w > 0 , F e > 0 (2) u_w>0, u_e>0 \Rightarrow F_w>0,F_e>0 \tag{2} uw>0,ue>0⇒Fw>0,Fe>0(2)
根据迎风格式,边界处的 ϕ \phi ϕ值为
ϕ w = ϕ W , ϕ e = ϕ P (3) \phi_w=\phi_W,\phi_e=\phi_P \tag{3} ϕw=ϕW,ϕe=ϕP(3)
带入到方程式 ( 1 ) (1) (1)中,有
F e ϕ P − F w ϕ W = D e ( ϕ E − ϕ P ) − D w ( ϕ P − ϕ W ) (4) F_e \phi_P - F_w \phi_W = D_e(\phi_E-\phi_P)-D_w(\phi_P-\phi_W) \tag{4} FeϕP−FwϕW=De(ϕE−ϕP)−Dw(ϕP−ϕW)(4)
重新排列一下,有
( D w + D e + F e ) ϕ P = ( D w + F w ) ϕ W + D e ϕ E (5) (D_w+D_e+F_e) \phi_P=(D_w+F_w) \phi_W + D_e \phi_E \tag{5} (Dw+De+Fe)ϕP=(Dw+Fw)ϕW+DeϕE(5)