Biot多孔弹性模型的公式推导过程

Biot多孔弹性模型的公式推导过程

流体的压缩性 β \beta β定义为:为流体密度 ρ f \rho_f ρf 对压力 𝑝 的变化率

β = ∂ ρ f ∂ p \beta=\frac{\partial \rho_f}{\partial p} β=pρf

我们关心的是随时间的变化率,因此我们将变量 ρ f \rho_f ρf 和压力 𝑝 都对时间 t t t 求导:
∂ ρ f ∂ t = ∂ ρ f ∂ p ∂ p ∂ t \frac{\partial \rho_f}{\partial t}=\frac{\partial \rho_f}{\partial p}\frac{\partial p}{\partial t} tρf=pρftp

则带入 β \beta β得到:

∂ ρ f ∂ t = β ∂ p ∂ t \frac{\partial \rho_f}{\partial t}=\beta \frac{\partial p}{\partial t} tρf=βtp

考虑孔隙流体的质量守恒,流体连续性方程描述了流体在多孔介质中的流动情况。以下是详细推导过程:

流体连续性方程

在多孔介质中,流体的质量守恒方程可以表示为:
∂ ( n ρ f ) ∂ t + ∇ ⋅ ( ρ f v f ) = 0 \frac{\partial (n \rho_f)}{\partial t} + \nabla \cdot (\rho_f \mathbf{v_f}) = 0 t(nρf)+(ρfvf)=0
其中:

  • n n n 是孔隙度。
  • ρ f \rho_f ρf是流体密度。
  • v f \mathbf{v_f} vf 是流体的平均速度。

为了简化计算,假设流体密度 ρ f \rho_f ρf是常数,即流体是不可压缩的。则方程简化为:
ϕ ∂ ρ f ∂ t + ρ f ∂ n ∂ t + ρ f ∇ ⋅ v f = 0 \phi \frac{\partial \rho_f}{\partial t} + \rho_f \frac{\partial n}{\partial t} + \rho_f \nabla \cdot \mathbf{v_f} = 0 ϕtρf+ρftn+ρfvf=0
ρ f ∂ ϕ ∂ t + ρ f ∇ ⋅ v f = 0 \rho_f \frac{\partial \phi}{\partial t} + \rho_f \nabla \cdot \mathbf{v_f} = 0 ρftϕ+ρfvf=0

将流体密度 (\rho_f) 提取出来,得:
∂ n ∂ t + ∇ ⋅ v f = 0 \frac{\partial n}{\partial t} + \nabla \cdot \mathbf{v_f} = 0 tn+vf=0

达西定律

达西定律描述了流体在多孔介质中的流动:
v f = − k μ ∇ p \mathbf{v_f} = -\frac{k}{\mu} \nabla p vf=μkp
其中:

  • k k k是渗透率。
  • μ \mu μ 是流体的黏度。
  • p p p 是孔隙压力。

将达西定律代入流体连续性方程中:
∂ n ∂ t − ∇ ⋅ ( k μ ∇ p ) = 0 \frac{\partial n}{\partial t} - \nabla \cdot \left( \frac{k}{\mu} \nabla p \right) = 0 tn(μkp)=0

流体质量守恒方程

单位体积内流体质量的变化率等于流体密度变化率和孔隙度变化率的和

这一点与多元函数求偏导加和是一致的

n n n为孔隙度, ρ f \rho_f ρf为流体密度,单位体积多孔介质中的流体质量为 n ρ f n\rho_f nρf

则:
∂ ( n ρ f ) ∂ t = n ∂ ρ f ∂ t + ρ f ∂ n ∂ t \frac{\partial (n\rho_f)}{\partial t}=n\frac{\partial \rho_f}{\partial t}+\rho_f\frac{\partial n}{\partial t} t(nρf)=ntρf+ρftn

∂ ρ f ∂ t = β ∂ p ∂ t \frac{\partial \rho_f}{\partial t}=\beta \frac{\partial p}{\partial t} tρf=βtp带入

得:
∂ ( n ρ f ) ∂ t = n β ∂ p ∂ t + ρ f ∂ n ∂ t \frac{\partial (n\rho_f)}{\partial t}=n\beta\frac{\partial p}{\partial t}+\rho_f\frac{\partial n}{\partial t} t(nρf)=nβtp+ρftn

将达西定律中得 ∂ n ∂ t \frac{\partial n}{\partial t} tn带入得:
∂ ( n ρ f ) ∂ t = n β ∂ p ∂ t + ρ f ∇ ⋅ ( k μ ∇ p ) \frac{\partial (n\rho_f)}{\partial t}=n\beta\frac{\partial p}{\partial t}+\rho_f\nabla \cdot \left( \frac{k}{\mu} \nabla p \right) t(nρf)=nβtp+ρf(μkp)

  • 10
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小孟的CDN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值