861. 翻转矩阵后的得分
题目
有一个二维矩阵 A 其中每个元素的值为 0 或 1 。
移动是指选择任一行或列,并转换该行或列中的每一个值:将所有 0 都更改为 1,将所有 1 都更改为 0。
在做出任意次数的移动后,将该矩阵的每一行都按照二进制数来解释,矩阵的得分就是这些数字的总和。
返回尽可能高的分数。
示例:
输入:[[0,0,1,1],[1,0,1,0],[1,1,0,0]]
输出:39
解释:
转换为 [[1,1,1,1],[1,0,0,1],[1,1,1,1]]
0b1111 + 0b1001 + 0b1111 = 15 + 9 + 15 = 39
思路
目的是得到最大值,则高位必须为1,也就是第一列全部为1.
剩余的列中,如果0的个数多于一般,则翻转。
int matrixScore(int** A, int ASize, int* AColSize){
int i, j;
int arr[21] = {0};
for(i=0;i<ASize;i++)
{
if(A[i][0]==0)
{
for(j=0;j<*AColSize;j++)
{
if(A[i][j]==0)
A[i][j] = 1;
else
A[i][j] = 0;
}
}
}
for(j=1;j<*AColSize;j++)
{
for(i=0;i<ASize;i++)
{
if(A[i][j]==0)
arr[j]++;
}
}
for(j=1;j<*AColSize;j++)
{
if(arr[j]*2>ASize)
for(i=0;i<ASize;i++)
{
if(A[i][j]==0)
A[i][j] = 1;
else
A[i][j] = 0;
}
}
int sum = 0;
for(i=0;i<ASize;i++)
{
for(j=0;j<*AColSize;j++)
{
if(A[i][j]==1)
sum += pow(2,*AColSize-j-1);
}
}
return sum;
}