BFS
package main.java.com.nexta.basic.mapvisit;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
/**
* @desc: BFS
* @Author: WangJ
* @Date: 2018/11/27 10:54
*/
public class BFSVisit {
//构建领接矩阵
//1、访问v,借助队列
//2、假设v最近一层没有访问的节点为v1,v2,v3,v4,依次访问v1,v2,v3,v4未被访问的节点
//3、重复2,直到没有被访问的领接点为止
static final int N = 10;
static int[][] a = {
{0, 1, 0, 0, 0, 0, 0, 1, 0, 0},
{1, 0, 1, 1, 0, 0, 0, 0, 0, 0},
{0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 1, 0, 0, 1, 1, 1, 0, 0, 0},
{0, 0, 0, 1, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 0, 1, 0, 0, 0},
{0, 0, 0, 1, 0, 1, 0, 0, 0, 0},
{1, 0, 0, 0, 0, 0, 0, 0, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 1, 0, 1},
{0, 0, 0, 0, 0, 0, 0, 1, 1, 0}
};
static boolean visit[] = new boolean[N];
static BlockingQueue<Integer> queue = new ArrayBlockingQueue(N);
public static void BFS(int v) throws Exception {
System.out.print(v + " ");
queue.put(v);
int b, adj;
while (!queue.isEmpty()) {
b = queue.poll();
adj = Adj(b);
while (adj != 0) {
if (visit[adj] == false) {
System.out.print(adj + " ");
visit[adj] = true;
queue.put(adj);
}
adj = Adj(b);
}
}
}
public static int Adj(int v) {
for (int i = 0; i < N; i++) {
if (a[v][i] == 1 && visit[i] == false) {
return i;
}
}
return 0;
}
public static void main(String[] args) throws Exception {
for (int i = 0; i < N; i++) {
if (visit[i] == false)
BFS(i);
}
}
/*
先我们要知道使用队列的目的是什么?一般情况下,如果是一些及时消息的处理,并且处理时间很短的情况下是不需要使用队列的,直接阻塞式的方法调用就可以了。
但是,如果在消息处理的时候特别费时间,这个时候如果有新的消息来了,就只能处于阻塞状态,造成用户等待。这个时候在项目中引入队列是十分有必要的。
当我们接受到消息后,先把消息放到队列中,然后再用新的线程进行处理,这个时候就不会有消息的阻塞了。下面就跟大家介绍两种队列的使用,一种是基于内存的,一种是基于数据库的。
首先,我们来看看基于内存的队列。在Java的并发包中已经提供了BlockingQueue的实现,比较常用的有ArrayBlockingQueue和LinkedBlockingQueue,
前者是以数组的形式存储,后者是以Node节点的链表形式存储。至于数组和链表的区别这里就不多说了。
BlockingQueue 队列常用的操作方法:
1.往队列中添加元素: add(), put(), offer()
2.从队列中取出或者删除元素: remove() element() peek() poll() take()
每个方法的说明如下:
offer()方法往队列添加元素如果队列已满直接返回false,队列未满则直接插入并返回true;
add()方法是对offer()方法的简单封装.如果队列已满,抛出异常new IllegalStateException("Queue full");
put()方法往队列里插入元素,如果队列已经满,则会一直等待直到队列为空插入新元素,或者线程被中断抛出异常.
remove()方法直接删除队头的元素:
peek()方法直接取出队头的元素,并不删除.
element()方法对peek方法进行简单封装,如果队头元素存在则取出并不删除,如果不存在抛出异常NoSuchElementException()
poll()方法取出并删除队头的元素,当队列为空,返回null;
take()方法取出并删除队头的元素,当队列为空,则会一直等待直到队列有新元素可以取出,或者线程被中断抛出异常
offer()方法一般跟pool()方法相对应, put()方法一般跟take()方法相对应.日常开发过程中offer()与pool()方法用的相对比较频繁.
*/
}
DFS
package main.java.com.nexta.basic.mapvisit;
/**
* @desc: DFS
* @Author: WangJ
* @Date: 2018/11/27 9:26
*/
public class DFSVisit {
//1、构建邻接矩阵
static final int N = 11;
static int[][] a = {
{0, 1, 0, 0, 0, 0, 0, 1, 0, 0},
{1, 0, 1, 1, 0, 0, 0, 0, 0, 0},
{0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 1, 0, 0, 1, 1, 1, 0, 0, 0},
{0, 0, 0, 1, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 0, 1, 0, 0, 0},
{0, 0, 0, 1, 0, 1, 0, 0, 0, 0},
{1, 0, 0, 0, 0, 0, 0, 0, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 1, 0, 1},
{0, 0, 0, 0, 0, 0, 0, 1, 1, 0}
};
static boolean[] visit = new boolean[N];
//2、递归访问矩阵
public static void DFS(int v) {
visit[v] = true;
System.out.print(v + " ");
int adj = Adj(v);
while (adj != 0) {
if (visit[adj] == false) {
DFS(adj);
}
adj = Adj(v);
}
}
//求领接点
public static int Adj(int v) {
for (int i = 0; i < N - 1; i++) {
if (a[v][i] == 1 && visit[i] == false) {
return i;
}
}
return 0;
}
public static void main(String[] args) {
for (int i = 0; i < N - 1; i++) {
if (visit[i] == false) {
DFS(i);
}
}
}
}