[bzoj1684][Usaco2005 Oct]Close Encounter

解决一个分数逼近问题:给定一个不可约分数,找到分母范围在1到32767内且值最接近给定分数的另一个不可约分数。通过枚举策略实现算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1684: [Usaco2005 Oct]Close Encounter

Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 533 Solved: 275
[Submit][Status][Discuss]
Description

Lacking even a fifth grade education, the cows are having trouble with a fraction problem from their textbook. Please help them. The problem is simple: Given a properly reduced fraction (i.e., the greatest common divisor of the numerator and denominator is 1, so the fraction cannot be further reduced) find the smallest properly reduced fraction with numerator and denominator in the range 1..32,767 that is closest (but not equal) to the given fraction. 找一个分数它最接近给出一个分数. 你要找的分数的值的范围在1..32767

Input

  • Line 1: Two positive space-separated integers N and D (1 <= N < D <= 32,767), respectively the numerator and denominator of the given fraction

Output

  • Line 1: Two space-separated integers, respectively the numerator and denominator of the smallest, closest fraction different from the input fraction.

Sample Input

2 3
Sample Output

21845 32767

OUTPUT DETAILS:

21845/32767 = .666676839503…. ~ 0.666666…. = 2/3.
HINT

Source

Silver

sol:
32767很小肯定枚举辣。这个i也可以二分辣,但是发现显然有一种方案很优秀,假设a/b无限接近i/j,则有a/b=i/j,那i就是a/b*j辣,那么优秀的方案一定是i,j和i+1,j。

#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
using namespace std;
int n,m;
inline int read()
{
    char c;
    int res,flag=0;
    while((c=getchar())>'9'||c<'0') if(c=='-')flag=1;
    res=c-'0';
    while((c=getchar())>='0'&&c<='9') res=(res<<3)+(res<<1)+c-'0';
    return flag?-res:res;
}
double a,b,a_,b_,ans,job;
inline void check(double x,double y)
{
    if(x*b==a*y) return;
    job=abs(x/y-a/b);
    if(job<ans)
    {
        ans=job;
        a_=x;
        b_=y;
    }
}
int main()
{
//  freopen("1684.in","r",stdin);
//  freopen(".out","w",stdout);
    scanf("%lf%lf",&a,&b);
    int i;
    ans=1e9;
    for(int j=1;j<=32767;++j)
    {
        i=(int)(a/b*j);
        check(i,j);
        check(i+1,j);
    }
    printf("%d %d",(int)a_,(int)b_);
}
餐饮行业: 店外引流:在餐厅门口放置爆店码,顾客进店前碰一碰,就能了解今日特色菜品、优惠套餐等信息,吸引顾客进店消费。 店内互动:在餐桌等位置设置爆店码,顾客用餐过程中碰一碰,可参与抽奖活动、领取餐后优惠券,或跳转到电子菜单进行加菜,增加顾客的用餐乐趣和二次消费几率。 零售店铺: 服装门店:在橱窗展示新品时,贴上爆店码,顾客碰一碰可查看模特穿搭视频、获取商品详情和尺码信息,以及该商品的会员专属折扣。在试衣镜旁放置爆店码,顾客碰一碰能查看搭配建议、关注公众号或加入会员,提升引流转粉效率。 便利店:在收银台设置爆店码,顾客付款时碰一碰,可领取满减优惠券、了解会员积分规则,或获取当季新品推荐,促进顾客当场购买或成为会员,提升销售额和顾客忠诚度。 线下活动: 展会:在展会入口、展位等位置放置爆店码,参与者碰一碰就能快速获取展会详情、参展商名单、活动议程、展位地图等信息,方便活动的推广和组织,同时也能收集参与者的信息,为后续营销做准备。 促销活动:在商场中庭、店铺门口等举办促销活动时,使用爆店码。顾客碰一碰可了解活动规则、参与方式,还能直接领取电子优惠券或参与线上互动游戏,增加活动的参与度和传播度。 服务行业: 美业:在美甲美睫店的服务台、镜子旁等地方设置爆店码,顾客碰一碰可自动引导添加美业小助理微信,方便预约下次服务,也可获取美容护肤知识、会员专属优惠等信息。 健身行业:在健身房的前台、更衣室门口、器械旁放置爆店码。顾客碰一碰能了解课程安排、教练介绍,还可参与打卡活动,分享训练成果到社交平台,领取健身优惠券或小礼品,吸引更多潜在顾客。 旅游行业: 景区:在景区入口、景点打卡处等设置爆店码,游客碰一碰可获取景区地图、景点介绍、语音讲解,还能领取景区纪念品优惠券或参与线上互动活动,提升游客的旅游体验和景区的知名度。 酒店:在酒店大堂、客房门口、餐厅等位置放置爆店码。客人碰一碰可了解酒店
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值