[来源未知][树上sa]旅行路线

这里写图片描述

这里写图片描述

这里写图片描述

sol:
发现题目就是给了一颗字典树让你求所有点到根组成的子串中本质不同的子串个数。用树上sa就行了。
树上sa的核心就是储存下rank[i][j]表示i这个点向上走2^j-1这么多步后,在这么多步的子串中的排名。这是因为在树上hei是没有O(n)求解的那个性质的,所以要用储存的rank数组来log求sa[i]与sa[i-1]的lcp。

#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cstdio>
#include<cstdlib>
#include<cmath>
using namespace std;

const int N=1e6+7;
const int logN=18;
int n,m,tot;
int sa[N],rank[logN][N],w[N],x[N],tmp[N];
int fir[N],go[N],nex[N],f[logN][N];

inline int read()
{
    char c;
    bool flag=false;
    while((c=getchar())>'9'||c<'0')
    if(c=='-')flag=true;
    int res=c-'0';
    while((c=getchar())>='0'&&c<='9')
    res=(res<<3)+(res<<1)+c-'0';
    return flag?-res:res; 
}
inline void Sa()
{
    int u,v,m=n;
    for(int i=1;i<=n;++i) w[x[i]]++;
    for(int i=1;i<=m;++i) w[i]+=w[i-1];
    for(int i=n;i>=1;--i) sa[w[x[i]]--]=i;
    rank[0][sa[1]]=1;
    m=1;
    for(int i=2;i<=n;++i)
    {
        u=sa[i];v=sa[i-1];
        if(x[u]!=x[v]) m++;
        rank[0][u]=m;
    }
    for(int j=0;j<logN;++j)
    {
        for(int i=0;i<=m;++i) w[i]=0;
        for(int i=1;i<=n;++i) w[rank[j][f[j][i]]]++;
        for(int i=1;i<=m;++i) w[i]+=w[i-1];
        for(int i=1;i<=n;++i)
        tmp[w[rank[j][f[j][i]]]--]=i;
        for(int i=0;i<=m;++i) w[i]=0;
        for(int i=1;i<=n;++i) w[rank[j][i]]++;
        for(int i=1;i<=m;++i) w[i]+=w[i-1];
        for(int i=n;i>=1;--i)
        sa[w[rank[j][tmp[i]]]--]=tmp[i];
        rank[j+1][sa[1]]=1;
        m=1;
        for(int i=2;i<=n;++i)
        {
            u=sa[i];v=sa[i-1];
            if(rank[j][u]!=rank[j][v]||rank[j][f[j][u]]!=rank[j][f[j][v]]) m++;
            rank[j+1][u]=m;
        }
        if(m==n) break;
    }
}
inline void add_edge(int a,int b)
{
    nex[++tot]=fir[a];fir[a]=tot;go[tot]=b;x[b]++;
    nex[++tot]=fir[b];fir[b]=tot;go[tot]=a;x[a]++;
}
int dep[N];
void dfs(int u)
{
    int v,e;
    dep[u]=dep[f[0][u]]+1;
    for(e=fir[u];v=go[e],e;e=nex[e])
    if(f[0][u]!=v)
    {
        f[0][v]=u;
        dfs(v);
    }
}
inline void rmq()
{
    for(int j=1;j<logN;++j)
    for(int i=1;i<=n;++i)
    f[j][i]=f[j-1][f[j-1][i]];
}
int ans;
inline void Ans()
{
    int a,b;
    for(int i=1;i<=n;++i) ans+=dep[i];
    for(int i=2;i<=n;++i)
    {
        a=sa[i-1];b=sa[i];
        for(int j=17;j>=0;--j)
        if((1<<j)<=dep[b]&&rank[j][a]==rank[j][b])
        {
            ans-=1<<j;
            a=f[j][a];b=f[j][b];
            if(!a||!b) break;
        }
    }
}
int main()
{
    freopen("route.in","r",stdin);
    freopen("route.out","w",stdout);
    n=read();
    int a,b;
    for(int i=1;i<n;++i)
    {
        a=read();
        b=read();
        add_edge(a,b);
    }
    dfs(1);
    rmq();
    Sa();
    Ans();
    printf("%d",ans);
}
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值