计算机视觉
文章平均质量分 77
fwyynl
在躺平和上进中仰卧起坐
展开
-
二分类神经网络结果准确率50%,loss一直在0.69的解决方法
先参考这篇文章,了解为什么loss是0.69链接:https://www.jianshu.com/p/45c2180cab17这个问题很多人在训练自己或者迁移别的网络的时候都会遇到,特别是二分类这样的简单网络,感觉无处着手,都他妈的是对的,就是Loss不动。到底什么原因了?吐槽的网址很多。比如这里,或者这里。若想知道解决办法,请直接跳到文章最后。 0.69是个什么数? 一般采用的都是cross entropy loss value,定义如下: 发现就是网络预...原创 2021-11-15 20:14:56 · 12781 阅读 · 1 评论 -
3D图像自监督一些关键知识
三维图像分类、语义分割和重建_邢源的博客-CSDN博客_三维图像分类三维图像分类、语义分割和重建引言1 三维数据的深度学习原理1.1 三维数据表示方法1.2 神经网络的优势1.2.1 三维图的构成1.2.2 多视觉图像1.2.3 点云1.2.4 图模型1.3 图像分类和语义分割1.4 三维重建1.4.1 问题陈述和分类2 案例分析2.1 案例对比2.1.1 pointNet 分类和语义分割+功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表原创 2021-10-22 17:00:23 · 1357 阅读 · 0 评论 -
【论文阅读】Self-supervised 3D hand pose estimation through training by fitting
数据拟合误差来表述姿势估计网络的训练损失,即手部表面被一组球体所近似。直接将姿势参数化为球体中心,我们的我们的方法利用了FCN的优点,避免了直接角度回归的困难。除了数据项,我们还设置了先验项,包括一个来自训练有素的VAE的数据驱动项。训练有素的VAE,以鼓励运动学的可行性。- 我们提出了一种自我监督的方法,用于从深度图中进行三维手部姿势的估计。我们提出了一种自我监督的方法,用于从深度图中进行3D手部姿势估计。在没有任何人工标签的情况下,该方法实现了与需要大量注释的先进技术相媲美的结果。原创 2021-10-21 23:57:49 · 1105 阅读 · 0 评论 -
Self-Supervised 3D Mesh Reconstruction from Single Images
SMRfeature representation of landmarks一致来自插值和预测 的3D属性一致Intro:前景知识从单图像中recover 3D信息:传统方法是fit先验可变性模型的参数face : 3DMM【1】human :SMPL 【23】先验模型,贵且耗时或者深度学习领域使用监督方法重建3D物体【7】,但这些方法需要在有GT 3D注释的合成或者3D扫描数据集上训练。 二维注释,二维重建方法关键模块是differentiable render【16】,可.原创 2021-10-15 14:13:10 · 1350 阅读 · 5 评论 -
3D手势重建-自监督学习Model-based 3D Hand Reconstruction via Self-Supervised Learning
自监督学习A survey on Semi-, Self- and Unsupervised Techniques in Image Classification (Similarities, Differences & Combinations)3D注释:密集的手部扫描,模型拟合的参数化手部网格,人类主食的3D关节在一些应用中,手部纹理也需要注意大部分方法重建3D手需要在训练时进行3D注释(贵)本文:S2HAND, 估算姿势、形状、纹理、相机视角从图中获..原创 2021-10-06 23:55:53 · 1645 阅读 · 0 评论 -
colab上安装caffe,各种cannot find xxx的情况
跑代码Instance-aware Semantic Segmentation via Multi-task Network Cascades需要用到caffe,阅读README.mdClone the MNC repository:# Make sure to clone with --recursivegit clone --recursive https://github.com/daijifeng001/MNC.gitInstall Python packages: numpy,原创 2021-07-29 22:37:15 · 1162 阅读 · 0 评论 -
Colab运行detectron2 demo
import ospath = "/content/drive/My Drive/detectron2-master"os.chdir(path)os.listdir(path)!ls进入云盘下载下来的代码文件夹中,本文跑FAIR给的github上的demo按照官方给的install指南安装然后getting started,在这一步中,cd demo/python demo.py --config-file ../configs/COCO-InstanceSegmentati.原创 2021-07-16 12:21:35 · 1532 阅读 · 1 评论 -
Google colab创建挂载和使用,跑gpu的ResNeXt
先要有一个google的admin账号,一开始用的学校的账号,下不了,真的贼无语google drive里创建一个google colaboratory,然后挂载from google.colab import drivedrive.mount('/content/gdrive')我用的TensorFlow 2.0以后的版本%tensorflow_version 2.xdevice_name = tf.test.gpu_device_name()if device_name !原创 2021-07-15 23:02:26 · 353 阅读 · 0 评论