如何通俗地理解概率论中的「极大似然估计法」?

我们假设硬币有两面,一面是“花”,一面是“字”。
一般来说,我们都觉得硬币是公平的,也就是“花”和“字”出现的概率是差不多的。
如果我扔了100次硬币,100次出现的都是“花”。
在这样的事实下,我觉得似乎硬币的参数不正常。极有可能两面都是“花”!
这种通过事实,反过来猜测硬币的情况,就是似然。
在这里插入图片描述
通过事实,推断出最有可能的硬币情况,就是最大似然估计。

1 概率vs似然

让我们先来比较下概率和似然。
为了避免和我们想讨论的概率混淆,我们把硬币的“花”出现的概率称为硬币的参数。

1.1 概率
已知硬币的参数,就可以去推测抛硬币的各种情况的可能性,这称为概率。
比如已知硬币是个正常的硬币,也就是硬币的参数为0.5。
那么我们就可以推测,扔10次硬币,出现5次“花”朝上的概率为(抛硬币遵循二项分布,这个就不多解释了):
在这里插入图片描述

1.2 似然
正如开头所说,我们对硬币的参数并不清楚,要通过抛硬币的情况去推测硬币的参数,这称为似然。
可以再举不那么恰当(主要模型不好建立)的例子,蹭下热点。

比如我们发现,鹿晗和关晓彤戴同款手链,穿同款卫衣,我们应该可以推测这两人关系的“参数”是“亲密”。
进一步发现,两人在同一个地方跨年,似乎,关系的“参数”是“不简单”。
最后,关晓彤号称要把初吻留给男友,但是最近在荧幕中献出初吻,对象就是鹿晗:我觉得最大的可能性,关系的“参数”是“在一起”。

通过证据,对两人的关系的“参数”进行推断,叫做似然,得到最可能的参数,叫做最大似然估计。

2 最大似然估计

来看看怎么进行最大似然估计。

2.1 具体的例子
我们实验的结果是,10次抛硬币,有6次是“花”。
所谓最大似然估计,就是假设硬币的参数,然后计算实验结果的概率是多少,概率越大的,那么这个假设的参数就越可能是真的。
我们先看看硬币是否是公平的,就用0.5作为硬币的参数,实验结果的概率为:
在这里插入图片描述
单独的一次计算没有什么意义,让我们继续往后面看。
再试试用0.6作为硬币的参数,实验结果的概率为:
在这里插入图片描述
之前说了,单次计算没有什么意义,但是两次计算就有意义了,因为可以进行比较了。
可以看到:
在这里插入图片描述
我们可以认为,0.6作为参数的可能性,是0.5作为参数的可能性的1.2倍。

2.2 作图
我们设硬币的参数为为 θ θ θ ,可以得到似然函数为:
在这里插入图片描述
这个函数用图形表示就是这样(横轴是 θ θ θ , 纵轴是 似然函数 L)
在这里插入图片描述
我们可以从图中看出两点:
• 参数为0.6时,概率最大
• 参数为0.5 或其他值也是有可能的,但可能性都小一点
所以更准确的说,似然(现在可以说似然函数了)是参数 θ θ θ 的概率分布。

而求最大似然估计的问题,就变成了求似然函数的极值。在这里,极值出现在 θ θ θ 为 0.6 时。

2.3 更多的实验结果
如果实验结果是,投掷100次,出现了60次“花”呢?
似然函数为:
在这里插入图片描述
用 0.5 作为硬币的参数,实验结果的概率为:
在这里插入图片描述
再试试用0.6作为硬币的参数,实验结果的概率为:
在这里插入图片描述
此时,0.6作为参数的可能性是0.5作为参数的可能性的8倍,新的实验结果更加支持0.6这个参数

用图形表示这个似然函数:
在这里插入图片描述
很明显图像缩窄了,可以这么解读,可选的参数的分布更集中了。也就是越多的实验结果(抛100次 vs. 抛 10次),让参数越来越明确。

2.4 更复杂一些的最大似然估计

2.4.1 数学名词
下面提升一点难度,开始采用更多的数学名词了。
先说一下数学名词:
• 一次实验:抛硬币10次,出现6次“花”,就是一次实验。
• 二项分布:抛硬币10次,出现6次“花”的概率为0.25,出现5次“花”的概率为0.21,所有的可能的结果(比如抛硬币10次,出现11次“花”,这就是不可能)的概率,放在一起就是二项分布

2.4.2 多次实验
之前的例子只做了一次实验。只做一次实验,没有必要算这么复杂,比如投掷100次,出现了60次“花”,我直接这样求最大似然估计:
在这里插入图片描述
不就好了?

最大似然估计真正的用途是针对多次实验。

2.4.3 上帝视角

为了说清楚这个问题,我引入一个上帝视角。
比如,我有如下的二项分布, θ θ θ 为出现“花”的概率(硬币最多抛10次):
在这里插入图片描述
在实际生活中, θ θ θ 往往是不知道的,这里你可以看得到,就好像你是上帝一样。

要提醒大家注意的一点,上面的图像只有上帝才能看到的,包括:
• 二次分布的柱状图
• 二次分布的曲线图
θ θ θ 值为多少
我把只有上帝能看到的用虚线表示, θ θ θ 用淡一点的颜色表示:
在这里插入图片描述

2.4.4 通过多次实验进行最大似然估计

上面的二项分布用通俗点的话来说,就是描述了抛10次硬币的结果的概率,其中,“花”出现的概率为 θ θ θ
针对上面的二项分布,我进行6次实验(也就是总共6次,每次抛10次硬币),把实验结果用点的形式标记在图像上(从技术上讲,这6个点是根据二项分布随机得到的):
在这里插入图片描述
这个实验结果,也就是图上的点,是我们“愚蠢的人类”可以看见的了。

可以看到,虽然进行了6次实验,但是却没有6个点,这是因为有的实验结果是一样的,就重合了。
为了方便观察,我把6个点的值用文字表示出来:
上图中的 {4,5,5,2,7,4} 就是6次实验的结果,分别表示:
• 第一次实验,4次出现“花”
• 第二次实验,5次出现“花”
• 第三次实验,5次出现“花”
• 以此类推
我们用 x 1 ​ , x 2 ​ , x 3 ​ , … x n ​ x1​,x2​,x3​,…xn​ x1,x2,x3,xn 表示每次实验结果,因为每次实验都是独立的,所以,多次实验的似然函数可以写作(得到这个似然函数很简单,独立事件的联合概率,直接相乘就可以得到):
在这里插入图片描述
f ( x n ​ ∣ θ ) f(xn​∣θ) f(xnθ) 表示在同一个参数下的实验结果,也可以认为是条件概率。
上面除了实验结果外,其他都是上帝看到的,而下面是通过实验结果,利用似然函数对 θ θ θ 值进行推断:
下面这幅图,分为两部分,上面这个图是6次试验的上帝视角,下图是估算出的 θ θ θ 值(具体的估算方法参见二项分布的最大似然估计相关的算法和计算步骤)。
在这里插入图片描述
可以看出,推断出来的 θ θ θ 值和上帝看到的差不多。之所以有差别是因为实验本身具有二项随机性,相信试验次数越多,推测会越准确。
自己动手试试当上帝的感觉吧,上面的 滑动条可以拖动哦:
此处有互动内容,点击此处前往操作

最大似然估计也是机器学习的一个重要算法,大家是否通过上面的操作,是否感受到了机器是如何学习的?

3 最大似然估计与贝叶斯定理的异同

3.1 相同之处
扔了100次硬币,100次出现的都是“花”,不论是最大似然估计,或者是贝叶斯定理,都认为有必要对之前假设的硬币的参数进行调整。
我在 怎样用非数学语言讲解贝叶斯定理(Bayes’ theorem)? 的最后也提出了这个问题。

3.2 不同之处
贝叶斯定理还要考虑,两面都是“花”的硬币本身存在的概率有多高。
如果我的硬币不是精心准备的,而是随机挑选的,那么一枚硬币两面都是“花”可能性微乎其微,几乎就是一个传说。
那么贝叶斯会认为哪怕扔了100次硬币,100次出现的都是“花”,但是因为两面都是“花”的硬币实在太少,那么实际这枚硬币是两面“花”的可能性仍然不高。

4 如何求解极大似然估计

https://blog.csdn.net/zengxiantao1994/article/details/72787849

5 极大似然估计的python实现

https://blog.csdn.net/pengjian444/article/details/71215965

6 参考

本文转载自 https://www.matongxue.com/madocs/447.html

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值