十分钟学习极大似然估计

极大似然估计是参数估计的一种重要方法,适用于已知模型但参数未知的情况。通过最大化似然函数来估计未知参数,例如在01分布的例子中,通过10次有放回摸球得到样本,估计摸到白球的概率为0.3。这种方法简单且在样本数量增加时逐渐准确。最大似然估计与矩估计和贝叶斯估计有所不同,矩估计不需要知道总体分布,但极大似然估计需要。贝叶斯估计则视参数为随机变量,具有更好的泛化能力。
摘要由CSDN通过智能技术生成

前言

参数估计是机器学习里面的一个重要主题,而极大似然估计是最传统、使用最广泛的估计方法之一。

本文主要介绍了极大似然估计,简单说明了其和矩估计、贝叶斯估计的异同,其他估计(如MAP)并不涉及。

这里是我的个人网站:
https://endlesslethe.com/easy-to-learn-mle.html
有更多总结分享,最新更新也只会发布在我的个人网站上。排版也可能会更好看一点=v=

为什么要用极大似然估计

对于一系列观察数据,我们常常可以找到一个具体分布来描述,但不清楚分布的参数。这时候我们就需要用极大似然估计来求解这个分布的参数。换句话说,极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。

极大似然估计概述

下面结合一个例子介绍极大似然估计法的思想和方法:

设一个袋子中有黑、白两种球,摸到白球的概率为p,现在要估计p的值。
我们令总体X为
\[
X = \left.
\begin{cases}
0,\quad 从袋中取得一白球,\\
1,\quad 从袋中取得一黑球.\\
\end{cases}
\right.
\]
则X服从01分布\(B(1,p)\)。

我们先进行有放回地摸球10次,其结果可用随机变量\(x_i\)表示,则\(x_1,x_2,⋯,x_10\)是来自总体X的一个样本。其值=(1,0,1,0,0,0,1,0,0,0),则似然函数为\(L§=p^3 (1−p)^7\)。

极大似然估计其实是理想地认为,对于极少的样本观测,我们观测到的样本很可能就是发生概率最大的。

似然函数\(L§\)是每个样本出现概率的乘积=\(\prod_{i=1}^N {P({x_i})}\),因为显然样本是独立同分布的。
根据极大似然估计的思想,我们需要让\(L§\)最大,把这时对应的\(\hat p\)作为我们的估计值。

求解\(L§\)的最大值点\(\hat p\),可由一阶导数\[\frac{dL§}{dp}=0\]确定。更一般的,我们通常可以假设白球出现次数为k,可以解得\[\hat p = \frac{k}{N}\]
这里带入\(k=3\)得\(\hat p=0.3\),所以我们把0.3作为摸到白球的概率。

值得注意的是,根据似然函数来求解参数的过程,与样本数量是无关的。我们可以使用变量\(x_i\)来描述样本观测值,并将模型参数\(\theta\)用来\(x_i\)表示。当样本较少时,极大似然估计偏差较大。但随着样本的增多(样本逐渐靠近总体分布),偏差慢慢减少为0。这意味着,极大似然估计是非常普适的。

实际上,即使直观上“极大似然估计”似乎是非常自然的想法,但它能在统计学中拥有堪比牛顿力学在物理学中的地位,是因为这种朴素的想法背后蕴含了估计量的泛函不变性、相合性、渐近有效性和渐进正态等诸多逆天的性质。

Note:极大似然估计暗合了切比雪夫大数定律。比如在这个例子中,如果放回次数变得极大,那么根据大数定律也有\(\hat p = \frac{k}{N}\) 。所以在用“局部估计整体”时,可以说使用了极大似然估计法,也可以说根据大数定律。

极大似然估计的具体步骤

我们需要做四步:表示似然函数、假设样本观测值、求解方程和代入数据。

似然函数

对于离散型和连续型随机变量,极大似然估计值\(\hat \theta\)都满足:
\[L(\hat \theta)=\max{L(\theta)}\]
只不过似然函数\(L(\theta)\)的表示方式略有不同:
离散型随机变量的似然函数是\(L(\theta) = \prod_{i=1}^N P({x_i})\),而连续型是\(L(\theta) = \prod_{i=1}^N f({x_i})\)。

样本假设

假设样本观测值为\(x_i\)

求解方程

由定义可知,估计值可由一阶导数\[\frac{dL§}{dp}=0\]解得。但由于lnL和L在同一位置取得最大值,所以极大似然估计值也可以由对数似然方程\[\frac{d(\ln{L§})}{dp}=0\]解得。

深入的数理统计理论可以证明:当总体分布服从单峰分布时,如果上两式有解,则其解就是θ的极大似然估计值。
Note:当方程无解时,应从定义出发,考虑\(L(\theta)\)的单调性,找到\(\max{L(\theta)}\)对应的估计值。

带入数据

将\(x_i\)用真实数据替换

多参数极大似然估计

当总体X的分布中含有多个未知参数,即\(\theta=(\theta_1,\theta_2,⋯,\theta_k)\)时,似然函数为\(L(\theta)=L(\theta_1,\theta_2,⋯,\theta_k)\)。有对数似然方程组:
{ ∂ ( ln ⁡ L ( θ ) ) ∂ θ 1 = 0 ∂ ( ln ⁡ L ( θ ) ) ∂ θ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值