链表不同于数组,知道一个节点,我们只能知道其后继节点,而不能知道其前驱节点,更无法直接移动到前驱节点
而由于递归可以通过压栈出栈来记录中间各节点,相当于依次将 链表节点压栈,然后需要时进行依次出栈,比如压栈顺序
a,b,c,d,则出栈顺序为 d,c,b,a,以此来模拟链表指针的回溯
下面通过例子来进行说明:
1.给定一个单链表,判断该链表是否属于回文结构
如果给定的是一个数组,那么该题很简单,采用双指针法,一个向前,一个向后,进行比较,比较结果相等则继续,不等则立刻返回false
所以我们考虑采用的办法,即双指针法,重点是如何实现第二个指针的向前遍历
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
bool isPalindrome(ListNode* head)
{
left = head;
ListNode* right = head;
return recurse(right);
}
private:
ListNode* left; //第一个指针,为了不让其受递归影响,所以设置为成员变量,便于操作
bool recurse(ListNode* right)
{
if(right == NULL)//如果是空链表,则认为是满足回文结构
{
return true;
}
bool isPal = recurse(right->next);//进行递归,找到最后一个节点,此时最后一个节点是用right表示的,然后开始回溯,即出栈过程
if(left -> val != right ->val)
{
return false;
}
//要手动移动left
left = left->next;
return isPal;
}
};
2.
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode* reverseBetween(ListNode* head, int m, int n)
{
flag = true;
left = head;
ListNode* right = head;
recurse(right, m, n);
return head;
}
private:
ListNode* left;//第一个指针
bool flag;
void recurse(ListNode* right,int m,int n)
{
if(n == 1)
{
return;
}
right = right->next;
if(m > 1)
{
left = left->next;
}
recurse(right,m-1,n-1);//将第二个指针递归移动到第n个节点中
if(left == right || right->next == left)//两个指针数据交换停止条件
{
flag = false;
}
if(flag)//之所以引入flag,是因为当flag为false时,递归并不会因此而停止,它还是要进行回溯,直到其初始位置
{
int tmp = left->val;
left->val = right->val;
right->val = tmp;
left = left->next;
}
return;
}
};
3.对链表题目的一点小总结
关于链表的反转,可以用递归实现,而且比较直观简单,当然也可以用迭代
迭代反转要记住,要想富,先修路;要想反转,先记后继,轮回不止(即先记录下当前节点的后继节点,然后改变当前节点的后继为前驱,前驱pre变为当前节点,当前节点变为后继节点)
after = cur->next;
cur->next = pre;
pre = cur;
cur = after;
如何知道链表的中间节点呢,双指针法,一个快指针,一次走两步,一个慢指针,一次走一步,当快指针不能继续向前走的时候,慢指针基本到达了链表中点,再稍微调整即可
判断链表是否有环,双指针追赶法
链表的排序可以采用归并排序,先从1开始进行,然后从2,到4,8.。。。
以下为代码,方便忘了以后复习:
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
//归并排序
class Solution {
public:
ListNode* sortList(ListNode* head)
{
if(head == NULL || head->next == NULL)
{
return head;
}
ListNode* dummy = new ListNode(-1);
dummy->next = head;
ListNode* tail = dummy;
int len = 0;
ListNode* tmp = head;
while(tmp)
{
len++;
tmp = tmp->next;
}
//归并排序
for(int step = 1; step < len; step <<= 1 )
{
ListNode* cur = dummy->next;
tail = dummy;
while(cur)
{
ListNode* left = cur;
ListNode* right = split(left,step);
cur = split(right,step);
tail = merge(left, right, tail);
}
}
return dummy->next;
}
private:
ListNode* split(ListNode* head,int step)//按step对链表进行分割,第一个自恋吧长度为step,返回的是第二个子链表的头指针
{
while(step > 1 && head != NULL)
{
head = head->next;
step--;
}
if(head == NULL)
{
return NULL;
}
ListNode* secondhead = head->next;
head->next =NULL;
return secondhead;
}
ListNode* merge(ListNode* left, ListNode* right, ListNode* tail) //返回归并后的尾结点,以方便连接其他顺序链表的归并结果
{
ListNode* cur = tail;
while(left && right)
{
if(left->val >= right->val)
{
cur->next = right;
cur = right;
right = right->next;
}
else
{
cur->next = left;
cur = left;
left = left->next;
}
}
cur->next = left ? left : right;
while(cur->next)
{
cur = cur->next;
}
return cur;
}
};
以例子
-1->5->3->4->0 进行说明
链表初始状态 | step | 子链表状态 | 子链表归并后状态 |
[-1,5,3,4,0] | 1 | [-1],[5],[3],[4],[0] | [-1,5],[3,4],[0] |
[-1,5,3,4,0] | 2 | [-1,5],[3,4],[0] | [-1,3,4,5],[0] |
[-1,3,4,5,0] | 4 | [-1,3,4,5],[0] | [-1,0,3,4,5] |
最后结果为 [-1,0,3,4,5]