sklearn.svm.SVC中kernel参数说明

本文介绍了sklearn.svm.SVC中不同核函数的使用,包括线性核(kernel='linear')、多项式核(kernel='poly',涉及degree、gamma和coef0参数)、径向基核(kernel='rbf',重点讨论了gamma的影响)以及sigmoid核(kernel='sigmod',coef0控制非线性映射)。对于线性核,推荐使用LinearSVC以提高效率。理解这些核函数的参数对于调整模型性能至关重要。
摘要由CSDN通过智能技术生成

常用核函数

线性核函数kernel=‘linear’

在这里插入图片描述
采用线性核kernel='linear’的效果和使用sklearn.svm.LinearSVC实现的效果一样,但采用线性核时速度较慢,特别是对于大数据集,推荐使用线性核时使用LinearSVC

多项式核函数kernel=‘poly’

在这里插入图片描述
degree代表d,表示多项式的次数
gamma为多项式的系数,coef0代表r,表示多项式的偏置
注:coef0是sklearn.svm.SVC中的参数,详情点击SVC参数说明

径向基核函数kernel=‘rbf’

在这里插入图片描述
可以将

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值