逻辑回归(Logistic regression )是用来解决分类问题的。
分类任务:最高一个目标函数,把观测值匹配到相关的类和标签上。
逻辑回归最广泛的应用是二元分类,以脏话判断为例使用逻辑回归
文本特征提取 :TfidfVectorizer类将CountVectorize和TfdfTransformer类封装在一起。
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model.logistic import LogisticRegression
X = []
# 前三行作为输入样本
X.append("fuck you")
X.append("fuck you all")
X.append("hello everyone")
# 后两句作为测试样本
X.append("fuck me")
X.append("hello boy")
# y为样本标签
y = [1,1,0]
vectorizer = TfidfVectorizer()
# 取X的前三句作为输入做tfidf转换
X_train = vectorizer.fit_transform(X[:-2])
# 取X的后两句用上句生成的tfidf做转换
X_test = vectorizer.transform(X[-2:])
# 用逻辑回归模型做训练
classifier = LogisticRegression()
classifier.fit(X_train, y)
# 做测试样例的预测
predictions = classifier.predict(X_test)
print (predictions)
[1,0]
判断结果:
是脏话"fuck me"
不是脏话"hello boy"