调用sklearn实现逻辑回归

逻辑回归(Logistic regression )是用来解决分类问题的。
分类任务:最高一个目标函数,把观测值匹配到相关的类和标签上。
逻辑回归最广泛的应用是二元分类,以脏话判断为例使用逻辑回归
文本特征提取 :TfidfVectorizer类将CountVectorize和TfdfTransformer类封装在一起。

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model.logistic import LogisticRegression
X = []
# 前三行作为输入样本
X.append("fuck you")
X.append("fuck you all")
X.append("hello everyone")
# 后两句作为测试样本
X.append("fuck me")
X.append("hello boy")
# y为样本标签
y = [1,1,0]
vectorizer = TfidfVectorizer()
# 取X的前三句作为输入做tfidf转换
X_train = vectorizer.fit_transform(X[:-2])
# 取X的后两句用上句生成的tfidf做转换
X_test = vectorizer.transform(X[-2:])
# 用逻辑回归模型做训练
classifier = LogisticRegression()
classifier.fit(X_train, y)
# 做测试样例的预测
predictions = classifier.predict(X_test)
print (predictions)

[1,0]
判断结果:
    是脏话"fuck me"
    不是脏话"hello boy"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值