题意:
给你n个物品,每一个物品的重量为a[i],你可以通过天平来取物品,
只要天平两端的重量之差小于等于m,那么你就可以取走天平上的所有物品,
你可以取任意次,问你你最大所能获得的物品的重量
解析:
额...这道题真的看出自己太菜了,代码不长,思维量一般,作为区域赛的题目应该是属于一道签到题的,
但是最后还是没有想出来.....想过dp,但是只想到用一维的dp[x],x表示左右两边的差值,但是后来就想不出来了。
x=3,0——2,1;5——2;3——0,这些就不知道怎么处理了,所以就懵逼了。。。。。
其实这里有一个很重要的性质就是无论答案是多少,我们其实只需要取一次就可以取完。因为假定你取了很多次
,每一次差值为di,那么你把d从大到小排序,然后交叉放,即将第i+1次大的一边放在第i次小的一边,第i+1小的一边放在
第i次大的一边,那么差值就是di+1-di了,那么差值就变小了,我们按照这种交叉放的方法,最后一定可以把取得情况都放在
一组内。那么这个问题就变成取一次,你最多可以取出的重量。
后来看了题解发现只要再加一维表示下标就可以了,dp[i][j]表示下标[1-i]内,两边差值为j的最大重量。
我们关心的只有两边的差值j,如果两边的差值相等,那么情况就是等价的,无论你放什么物品。
因为对于当前差值j,你再加一件物品后的状态,只与之前的差值j有关,差值变成j+w[i],或abs(j-w[i])
那么我们就只需要记录在差值j下,所有情况的最大的重量,因为和其他情况差值为j的情况等价,那么我们
只需要取最优的情况。(这个大概就是为什么能用dp来解的原因)
那么后面如果对于w[i]物品,假定放进去最优解是差值为j的时候,那么这个最优解一定是从上一个状态的其中一个差值j'过来的
譬如m=3 ,a[]=3 6 9,对于9,最优解是差值0(3,6——9),这个是从上一个差值为9的状态转移过来的(3,6——0),
那么最后我们只需要在dp[n][0..m]中找最大值就可以了
dp[i][j]=max(dp[i][j],dp[i-1][j],dp[i-1][abs(j-w[i])]+w[i],dp[i-1][j+w[i]]+w[i])
其实这个只需要开两行的二维dp,因为这个状态转移只跟前一个状态有关,这个dp说实话有点背包的味道
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 1e4+10;
int dp[101][MAXN*2+10];
int a[101];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
memset(dp,-1,sizeof(dp));
dp[0][0]=0;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=MAXN;j++)
{
if(dp[i-1][j]!=-1) dp[i][j]=max(dp[i][j],dp[i-1][j]);
if(dp[i-1][j+a[i]]!=-1) dp[i][j]=max(dp[i][j],dp[i-1][j+a[i]]+a[i]);
if(dp[i-1][abs(j-a[i])]!=-1) dp[i][j]=max(dp[i][j],dp[i-1][abs(j-a[i])]+a[i]);
}
}
int ans=0;
for(int i=0;i<=m;i++)
{
ans=max(dp[n][i],ans);
}
printf("%d\n",ans);
}
下面这个是严格定义dp[i][j],j=left-right的差值
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 1e4+10;
int dp[101][MAXN*2+10];
int a[101];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
memset(dp,-1,sizeof(dp));
dp[0][MAXN]=0;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=2*MAXN;j++) //j属于[-MAXN,MAXN]+MAXN
{
if(dp[i-1][j]!=-1) dp[i][j]=max(dp[i][j],dp[i-1][j]);
if(j+a[i]<=2*MAXN&&dp[i-1][j+a[i]]!=-1) dp[i][j]=max(dp[i][j],dp[i-1][j+a[i]]+a[i]); //放左边
if(j-a[i]>=0&&dp[i-1][j-a[i]]!=-1) dp[i][j]=max(dp[i][j],dp[i-1][j-a[i]]+a[i]); //放左边
}
}
int ans=0;
for(int i=0;i<=m;i++)
{
ans=max(dp[n][MAXN-i],ans);
ans=max(dp[n][i+MAXN],ans);
}
printf("%d\n",ans);
}