q = x*w + b 后向传递梯度求导(求dx,dw,db)

该博客详细介绍了在深度学习中,针对线性运算q=x*w+b的后向传播过程,如何计算输入梯度dx、权重梯度dw和偏置梯度db。通过矩阵运算,得出dx=dout*w^T, dw=x^T*dout, db=[∑douti,1, ∑douti,2, ..., ∑douti,M],保持了与原变量相同的维度。" 113746766,5688454,Zookeeper安装与启动指南,"['Zookeeper', '安装教程', '配置', '服务器管理']
摘要由CSDN通过智能技术生成

q = x ∗ w + b q = x*w + b q=xw+b
x : N ∗ D x: N*D x:ND
w : D ∗ M w: D*M w:DM
b : M b: M b:M
q : N ∗ M q: N*M q:NM

N:样本(图像)数量
D:一个样本(图像)展开后的维度
M:分类的个数
后向传递得到: α f α q = d o u t \frac{\alpha f}{\alpha q} = dout αqαf=dout
d o u t : N ∗ M dout:N*M dout:NM

求解 d x dx dx
α q i , k α x i , j = w j , k α f α q i , k ∗ α q i , k α x i , j = d o u t i , k ∗ w j , k ∵ q and x has a common dimension  α q i , _ α x i , j = ∑ w j , _ α f α q i , _ ∗ α q i , _ α x i , j = ∑ k = 1 M d o u t i , k ∗ w j , k ∵ keep the dimension of x and dx the same d x = α f α x = d o u t ∗ w T \begin{aligned} \frac{\alpha q_{i,k}}{\alpha x_{i,j}} = w_{j,k}\\ \\ \frac{\alpha f}{\alpha q_{i,k}} *\frac{\alpha q_{i,k}}{\alpha x_{i,j}} = dout_{i,k} * w_{j,k} \\ \\ \because \text{q and x has a common dimension }\\ \\ \frac{\alpha q_{i,\_}}{\alpha x_{i,j}} = \sum w_{j,\_}\\ \\ \frac{\alpha f}{\alpha q_{i,\_}} *\frac{\alpha q_{i,\_}}{\alpha x_{i,j}} = \sum_{k=1}^{M} dout_{i,k} * w_{j,k} \\ \\ \because \text{keep the dimension of x and dx the same}\\ \\ dx = \frac{\alpha f}{\alpha x} = dout * w^{T}\\ \end{aligned} αxi,jαqi,k=wj,k

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值