pandas模块--Series数据与DataFrame数据

pandas是Python中的数据处理模块,主要数据结构包括Series和DataFrame。Series是一维标签数据,类似字典,提供了创建、元素操作和特殊运算等功能。DataFrame是二维表格数据,具备行和列索引,支持多种操作和从文件读取数据。groupby功能允许按指定键对数据进行切片、切块和摘要统计。
摘要由CSDN通过智能技术生成

pandas模块是python用于数据导入与整理的模块,对数据挖掘前期数据的处理工作十分有用。
pandas模块的数据结构主要有两种:
1.Series
2.DataFrame

Series

注:以下的所有pandas都简称为pd(import pandas as pd)

  1. 介绍:
    series结构是一个一维的标签矩阵,类似于python里面的字典key-value结构。
  2. 常用方法:
创建Series对象
# 用列表创建series对象
array=[" 粉条 " , " 粉丝 " , " 粉带 " ]
s1=pd.series(data=array)
print(s1)
"""
0    粉条
1    粉带
2    粉丝
dtype: object
"""
# 如果不指定索引默认从0开始,dtype为数据的类型
ss1=pd.Series(data=array,index=[ ' A ' , ' B ' , ' C '])
print(ss1)
"""
A    粉条
B    粉带
C    粉丝
dtype: object
"""

# 通过numpy的对象Ndarray创建Series:
n=np.random.randn(5)    # 随机创建一个ndarray对象;
s2=pd.Series(data=n)
print(s2)
"""
0   -1.387049
1   -0.527612
2   -0.389382
3    0.549090
4    0.122328
dtype: float64
"""

# 修改元素的数据类型
ss2=s2.astype(np.int)    # 也可以修改为nan缺失值
print(ss2)
"""
0   -1
1    0
2    0
3    0
4    0
dtype: int64
"""


# 通过字典创建Series对象
dict={string.ascii_lowercase[i]:i for i in range(10)}
s3=pd.Series(dict)
print(s3)
"""
a    0
b    1
c    2
d    3
e    4
f    5
g    6
h    7
i    8
j    9
dtype: int64
"""
对Series元素进行操作
array=[' 粉条 ' , ' 粉丝 ' , ' 粉带 ']
s1=pd.Series()

# 修改Series的索引值,默认索引为0,1,2,3...
s1.index=[ 'A' , 'B' , 'C']
print(s1)
"""
A    粉条
B    粉带
C    粉丝
dtype: object
"""

# Series纵向拼接
array=[' 粉条 ' , ' 粉丝 ' , ' 粉带 ']
s2=pd.Series(data=array)
s3=s1.append(s2) 
print(s3)
"""
A    粉条
B    粉带
C    粉丝
0    粉条
1    粉带
2    粉丝
dtype: object
"""

#删除指定索引对应的元素
s3=s3.drop('C') 
print(s3)
"""
A    粉条
B    粉带
0    粉条
1    粉带
2    粉丝
dtype: object
"""

# 根据指定的索引查找元素
pri
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值