【学习笔记】贪心科技AI体验课

第一课

  1. AI相关分类
    • 计算机视觉
    • 自然语言处理
    • 语音
  2. AI知识体系
    在这里插入图片描述
  3. 会大数据时加分项
  4. 机器学习项目流程
    数据源 -> 数据预处理 -> 特征工程 -> 数据建模 -> 数据验证
  5. 一般不需要学爬虫,会有大量的大数据

第二课 CV

  1. AI学习路线
    编程语言 - 数据处理 - 人工智能
  2. python学习
    • 基础语法
    • 函数及函数式编程
    • 面向对象
    • 文件操作
    • 设计模块
  3. 人工智能学习
    • 先学机器学习算法,是基础
  4. 最佳的学习方法
    • 知识的获取:书、视频
    • 知识的练习:应用
  5. KNN算法解析
    K近邻算法
    • 应用:区分菠萝和凤梨
    • K值选取方法:穷举图示法,K值是奇数(K个邻居投票,偶数个邻居容易投出平票)
    • KNN和K-means区别:前者是监督学习,后者是无监督学习

第三课 NLP

  1. AI 岗位划分
    • 机器学习工程师
    • 深度学习工程师
    • 数据分析工程师
        <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值