第一课
- AI相关分类
- 计算机视觉
- 自然语言处理
- 语音
- AI知识体系
- 会大数据时加分项
- 机器学习项目流程
数据源 -> 数据预处理 -> 特征工程 -> 数据建模 -> 数据验证 - 一般不需要学爬虫,会有大量的大数据
第二课 CV
- AI学习路线
编程语言 - 数据处理 - 人工智能 - python学习
- 基础语法
- 函数及函数式编程
- 面向对象
- 文件操作
- 设计模块
- 人工智能学习
- 先学机器学习算法,是基础
- 最佳的学习方法
- 知识的获取:书、视频
- 知识的练习:应用
- KNN算法解析
K近邻算法- 应用:区分菠萝和凤梨
- K值选取方法:穷举图示法,K值是奇数(K个邻居投票,偶数个邻居容易投出平票)
- KNN和K-means区别:前者是监督学习,后者是无监督学习
第三课 NLP
- AI 岗位划分
- 机器学习工程师
- 深度学习工程师
- 数据分析工程师
-
<