三次方程计算器
一元三次方程的解析解法早在500年前就已经被意大利数学家攻克了:
我们可以看到,相比于二次方程,三次方程求根公式表达式要复杂的多,包含了一个二重根号,计算量庞大,而且大多数情况下会出现一对复数解,C语言不太好操作;在判别式小于0时,即使三个解都是实数,我们仍然需要对一个复数开立方,这样的一个公式显然是不适合人工计算和计算器编程的。
由于三次方程至少有一个实根,因此我们可以通过常规的数值方法找出这个实数解。本程序先用二分法估算方程零点的大致位置,再通过牛顿迭代法获得最大实数根的数值解,最后通过根与系数的关系:
将方程降为二次方程,通过二次方程的求根公式,获得该三次方程在复数范围内的全部解,这就避免了对复数开方,计算量也小得多。
本程序在理论上可以求解最大实根在[-64,+64]范围内的所有类型的三次方程。
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
double funeva(double a,double b,double c, double d, double x)
{
double y=x*(x*(a*x+b)+c)+d;
return y;
}
double diffeva(double a,double b,double c,double x)
{
double y0=x*(3*a*x+2*b)+c;
return y0;
}
double eqsolve(double a,double b,double c,double d)
{
double e=-64,f=64;
double x,m;
int i=0;
while((f-e)>=0.25)
{
if(int(funeva(a,b,c,d,e))^int(funeva(a,b,c,d,(e+f)/2)<=0))
{
f=(e+f)/2;
i++;
}
else
{
e=(e+f)/2;
i++;
}
}
x = (e+f)/2;
do
{
m=funeva(a,b,c,d,x)/diffeva(a,b,c,x);
x-= m;
i++;
}
while(fabs(m)>=10e-10);
printf("i=%d\n",i);
return x;
}
int main()
{
double a,b,c,d,x1,x2,x3;
double B,C,delta;
double y;
int i=0;
while(i!=1)
{
printf("Please input the coefficient of cube equation:\n");
scanf("%lf,%lf,%lf,%lf",&a,&b,&c,&d);
x1=eqsolve(a,b,c,d);
printf("x1= %.8f\n",x1);
if(a!=0)
{
B = b/a+x1;
C = -d/(a*x1);
delta = B*B-4*C;
if(delta>=0)
{
x2 = (-B+ sqrt(delta))/2.0;
x3 = (-B- sqrt(delta))/2.0;
printf("x2= %.8f\nx3= %.8f\n",x2,x3);
}
else
{
x2 = x3 = -B/2.0;
y = sqrt(-delta)/2.0;
printf("x2= %.8f + %.8fi\n",x2,y);
printf("x3= %.8f - %.8fi\n",x2,y);
}
}
if(a==0)
{
x2 = -(c/b+x1);
printf("x2=%.8f\n",x2);
}
printf("\n\nContinue 0(Yes)/1(No)?\n");
scanf("%d",&i);
printf("\n");
}
system("pause");
return 0;
}
运行结果: